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The energy balance of the Maxwellighulk) electrons is analyzed in spatially inhomogeneous negative-
glow plasmag¥NGP). The purpose is to give a comprehensive model which enables the electron temperature in
the NGP to be predicted. Since the bulk of the electron distribution fundbir) in the NGP is Maxwellian,
the rates of many important plasma processeas., ambipolar diffusion, recombination, stepwise procesass
well as the plasma potential, are controlled by the electron temperature. Knowledge of the electron temperature
is thus of particular importance for such types of plasma. In order to calculate the EDF in the elastic energy
range(slow electrong a spatially inhomogeneous kinetic equation is employed, in which the electron-electron
collision integral is fully incorporated. Owing to the complicat@mnlinear integro-differentialform of the
electron-electron collision integral, the direct numerical solution of the full kinetic equation represents a
difficult task. An efficient way to render the problem tractable consists in breaking the slow electrons up into
two distinct groups, namely, the Maxwelligmapped and superthermdlintrapped electrons. The parameters
of the Maxwellian EDF can be found from the particle- and energy-balance equations. The superthermal EDF
can be found from a reduced kinetic equation. The separation of the electron population into two groups
allowed us to obtain an energy-balance equation for the Maxweltiald, trapped electrons, which properly
accounts for the most important physical mechanisms, such as heating due to Coulomb collisions with the
superthermalhot, untrappegelectrons. It is shown that the problem of finding the electron temperature in a
weakly collisional NGP can be described correctly only at the kinetic level. In this situation, the use of the fluid
approximation, in which the electron ensemble is treated in terms of its density and mean energy, results in a
physically incorrect energy-balance equation. Furthermore, it is demonstrated that the “nonlocal” effects may
be critical for the problem of finding the EDF in general, and the electron temperature in particular, so that the
“local” (kinetic) models may also produce erroneous results. The principal terms in the energy-balance
equation are identified, and this equation is simplified to allow a ready solution and implementation into a
plasma code. The validity of the proposed model for predicting the electron temperature was confirmed by
numerical calculations of the EDF from the full kinetic equation. The results of the paper can be applied to the
NGP generated in direct-current glow discharges with planar or hollow cathodes, as well as to negative-glow-
like plasmas, such as beam-generated and after@lesaying plasmas[S1063-651X98)08811-4

PACS numbdis): 52.80~s, 52.65-y, 52.25.Dg

I. INTRODUCTION surface-processini,7] applications.
The direct-current glow discharges with either planar or
The negative-glow plasmédNGP) has received consider- hollow cathodes are the most common examples of dis-
able attention in the past and in recent years. The NGP isharges in which the NGP is generated. Another quite im-
generated in the cathode region of glow discharges with eiportant type of plasma, which has properties similar to those
ther cold[1-7] or hot[8-10] planar cathodes, and with hol- of the NGP, is the afterglowdecaying plasma. The pulsed
low cathodeq11-15. The most distinctive feature of the (low-pressurgplasmas have been found to be very promis-
NGP (sometimes also called tfiield-freeplasmais thatitis  ing in plasma processing and strong efforts are now being
sustained by an “external” ionization sour€&onizer” ). In made to model these plasm@sg.,[19]). The presence of a
a glow discharge, this source is due to fast electrons streansuperthermal electron population created in various pro-
ing into the NGP from the cathode-fall region. Externally cesses involving excited particlésetastablescan greatly
injected beams of fasfneutral or chargedparticles(e.g.,  affect the discharge dynamics in the aftergltsee[20—25
electrons, atoms, s4dd6—18) or (y) radiation can be em- for detail9. Also very close in nature to the NG&nd to the
ployed as such an “ionizer.” The NGP generally featuresafterglow plasmais the plasma of the Faraday dark space,
enhanced ionization and excitation as compared with, e.gwhich is where the fast electrons streaming from the cathode
the positive-column plasma. This makes the NGP-based didall cannot reach, but where the electric field is weak, and
charges a useful tool in lasdd4], lighting [8—10, and where the current is transported by superthermal electrons
[2]. To some extent, a negative-glow-like plasma is gener-
ated in the magnetic-multicusp dischardesy.,[26]). The
*Electronic address: Robert.Arslanbekov@sci.monash.edu.au plasma in these devices is created by electrons emitted by a
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hot filament and accelerated in a narrow double layer surportant, so that the bulk EDF tends to be Maxwellian with a
rounding the filament. Finally, the magnetron dischargedow characteristic energyl<1 eV). Nonetheless, the entire
(e.g.,[27]) can be considered to consist partly of a NGP. EDF in the NGP is far from being Maxwellian. The efficient

It is clear that in every model of the cathode region, andionization by fast electronsw® €*) produces secondary
in every electrode-to-electrode model, one inevitably has t@lectrons with energies appreciably higher than the mean en-
treat the NGP. In most of such simulation models, the elecergy of the Maxwellian bulKcf. the positive-column plasma,
trons are divided into thefast and slow electrons where secondary electrons are produced mostly with low en-
[28,3,5,29,6,7,1b The fast electrons, which are responsibleergies,w<e*). Such energetic electror{deing “too far”
for excitation and ionization of gas particles, are treated kifrom the Maxwellian bulk do not have time to Maxwellize,
netically (Monte Carlo methodp3,11,19, the direct solution  and they form a “hot” tail of the EDF, which is essentially
of the Boltzmann equatiof30], the convective schemes non-Maxwellian. The lifetime of a superthernaintrapped
[31], etc). The slow electrons, which are not capable of ex-electron is determined by the fast processes of free diffusion
citing and ionizing, are treated using the fluilydrody- to the wall, and of energy relaxation through electron-
namig approach. Usually the slow electrons are described irlectron and electron-atom collisions. On the contrary, the
terms of the electron density, and temperatur&,, assum- lifetime of a bulk (trapped electron is comparable to the
ing that they have a Maxwellian distribution. Whitg, is  characteristic times of the slow processes of ambipolar dif-
found from the continuity equations, different approachesusion and recombination.
exist to include the electron temperature in the model. Some The bulk electrons in the NGP are trapped in the self-
works employ hydrodynamic energy-balance equations t@onsistentreversed electric fields and so give practically no
predict T, in the NGP (e.g.,[32,33,3). However, in most  contribution to the electron current. As such, even though the
models, T, is not calculated but used as an input parametesupertherma(untrapped electrons are much less numerous,
[28,8,4,9,29,11,7,15 The value ofT, in the NGP is typi- they play several important roles in the discharge dynamics.
cally assigned to 1 eVhereinafter,T, is expressed in units They carry the electron current in the plasma and thus must
of eV) regardless of the plasma conditionée.g., be allowed for in calculations of the self-consistent electric
[29,11,7,19), or assumed to be close to the atom temperaturéelds in the plasma and wall sheaths. For example, drastic
T,. And yet, not only carT . be very different fromT, or 1 changes in the wall potential drop were observed and pre-
eV but it can also vary significantly depending on the plasmalicted in[23] due to the presence of a small amount of su-
parameters, such as gas pressure, electron density, dischapg®thermal electrons, and scenarios when anomalously high
geometry(e.g., [12,13,34,3%. Another quite common ap- wall potential drops may arise were analyzed ?2]. Fur-
proach in modeling the negative-glow-like plasntasy., af- thermore, the superthermal electrons are essential to the en-
terglow, magnetic-multicusp dischargés to use a “local”  ergy balance of the bulk electrons. This is due to the absence
approximation (e.g., [36,26)). However, since these dis- of a direct(current-carryingelectric field in the NGP, which
charges typically operate at rather low gas pressures, thesults in Coulomb collisions between the cdlllk) and
“nonlocal” effects, which are discussed in the present work,hot (superthermalelectrons being the primary energy gain
may manifest themselves most strongly, so that the “local”’mechanism for the cold electrons. Therefore consideration
models may be in error. Since the majority of electrons in thenust be given to the existence of a superthermal electron
NGP have a Maxwellian distribution, knowledge of the elec-population, which is not done in the traditional fluid ap-
tron temperature is of primary importance. The rates of manyroach. Since the superthermal electrons cannot be described
important plasma processés.g., ambipolar diffusion, re- in terms of two parameters, namely, and T, (fluid ap-
combination, stepwise procesgeas well as the plasma po- proach, they must be treatekinetically.

tential, in the NGP are controlled bl,, and the use oad Already in the early studies of electron kinetics in the
hoc values of T, can result in erroneous predictions of the ionospherge.g.,[37,38) and afterglow(e.g.,[20,21)) plas-
electron density, metastable density, and so on. mas, the importance of superthermal electrons was recog-

The slow electrongwith kinetic energiesv<e*, where nized. More recently, the same conclusion has been drawn
€* is the lowest excitation threshold of gas parti¢lesthe  for plasmas produced by beams of charged partitdes.,
NGP can be divided into two weakly interdependent groups[18]) and for plasmas in hollow-cathode dischardesy.,
namely, theMaxwellian (bulk) electrons and theuperther-  [12]). A much more significant number of works, however,
mal electrons(referred to as “intermediate” electrons in deals with the cathode region of a glow discharge with pla-
[2]). Such a division is possible since the characteristic ennar electrodes. Baylet al. [33] concluded that the only en-
ergy, density, and time scales of these electron groups diffezrgy gain process for the electrons in the NGP is due to the
drastically. Indeed, the Maxwellian bulk is characterized by avork of electron pressure. Surendeaal. [3] allowed for
high number densityr(;) and low mean energyT(); by  heating of slow electronsw=e*) by fast electrons W
contrast, the density of superthermal electrans,is signifi-  >¢€*) only. Lawler et al. [1] have analyzed the power bal-
cantly lower tham,[ng~(10"%-10 ?)n,], and their mean ance of the negative-glow electrons. Monte Carlo simula-
energy, s, is significantly higher tha, (es~€*/2>T,). tions were used to calculate the distribution of the “hot”
Such differences result from the following equally importantelectrons in the NGP. In the Monte Carlo simulations, a uni-
physical reasons: The electric field in the NGP is typicallyform nonreversed electric field.0 V/cm and 10 V/cmwas
reversedno direct field, or there may exist a direct field but assumed and the “cold” trapped electrons were not in-
its intensity is weak(e.g.,[2,12]). As such the electron dis- cluded. An estimation of the power balance for a single set of
tribution function(EDF) exhibits relatively low mean ener- discharge parameters was presented, which is based on the
gies and electron-electron Coulomb collisions become imfesults of the Monte Carlo simulations and refined experi-
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ments. It has been concluded[it] that heating due to Cou- &

lomb collisions with the hot electrons is the dominant energy \E e H diSCh‘I‘l’ge

gain mechanism in the power balance of the cold electrons. ; untrapped b‘;ﬁ‘c‘gta}fy/‘:’ / wa

Kolobov and Tsendif2] have presented an analytic model ; eec& i 2

of the cathode region of a short glow discharge. Their model : i

incorporates an energy-balance equation for the trapped elec- E :

trons based on a kinetic equation for the slow electrons in the 5

“nonlocal” regime. It was pointed out ifi2] that the prob- ; = ! Neemem

lem of deriving the energy balance is complicated also by the : ] i

fact that the value oT,, is sensitive to the shape of the EDF N :

at total energies close to the wall potential energy. ! ----"~~/ -e®.(r) i
In[12,34,13,14 a simplified model was used to calculate : - trapped | _ n't' """ A e -e@elR)

the electron temperature in the NGP of hollow-cathode dis- P\ Shectrons S ;

charges. Some assumptions of that model, however, re- : \ / AN

mained to be validated by rigorous theoretical and numerical R 1. 0 r. R 'r

calculations. Such calculations necessitate the direct solution ) ] . o

of a full kinetic equation, which represents an extensive FIG. 1. Model discharge configuration of a cylindrical geom-

computational task. So it is highly desirable to develop £try. The EDF is shown schematically on the vertical energy axis.
comprehensive model for predicting the electron temperatur&N€ shaded area represents the EDF of the untrapped eleatrons;
in the NGP in a relatively simple manner, without solving a=racc(e) determine the turning points, between which an electron

full kinetic equation. In the present paper such a model iéNith a total energy bounces. The thickness of the boundary sheath
: is enlarged for clarity.

presented and its results are compared with complete nu-

merical caIcuIathns. In Sec. Il the physical gssumptlons of We limit ourselves to the case of a rare-gas discharge and
the model are discussed. In Sec. lll a spatially inhomoge-

N N ) consider only the slow electrons. The slow electrons include
neous kinetic equation is introduced, which allows one toaII those with Kinetic energiesy<e* (the elastic ener
calculate the slow EDF including electron-electron Coulomb gies/= . gy

rangg. Thus all electrons (Maxwellian, superthermal,

interactions. An energy-balance equation for the Maxwellian[ . . .
o o : rapped, untrappgdconsidered in the paper are included
electrons is introduced and limiting cases corresponding tQ

“ » " » . . among the slow electrons. In the absorbing-wall approxima-
the “nonlocal” and “local” regimes are analyzed in Sec.

. tion v* —o (where v* is the frequency of inelastic pro-
V. In .V numerical results are present n mpar . :
Sec umerical results are presented and compa eggsse)s we let the slow EDF vanish for energiee=e*

with the theoretical predictions. Finally, Sec. VI gives the (e.0.,[2]; hence herav=e* is the maximum electron en-

summatry. ergy (w..=€*). Therefore we neglect inelastic processes in-
volving ground-state atoms, as well as those involving meta-
Il. PHYSICAL ASSUMPTIONS OF THE MODEL stables(see[24] for detailg. It is supposed that electrons
appear in the elastic energy region through the action of an
A model plasma discharge is considered here which apexternal ionizedue to fast electrons wittv>€*). The fast
proximates the NGP generated experimentally. Even thougBlectrons are not treated, and the rate of electron production
the results can be applied to different types of NGP, the NGRjonization) is assumed to be an input parameter. Also, pro-
created by fast electrons is implied, as occurs in directzesses involving metastables are discussed, by which super-
current glOW diSChargeS W|th either planar or hOllOW Cath'therma| e|ectr0ns in the e|astic energy range may amseer
odes. Such a plasma operates typically at gas pressures frqny] for detaily. Such processes can be of great importance
100’s of mTorr to 10's of Torr and electron densities from jn the NGP (see alsg10]) since the metastable density is
10'%cm™* to 10*cm™3. It is supposed that the NGP is sur- often comparable with, or exceeds, the electron density.
rounded by a dielectric wall defined as Sp, wherer is the Fina”y, On'y the Space_charg{ambipo'a} electric field is
spatial coordinate an§, the plasma-boundary surfa@g.,  assumed to exist in the plasra direct field. The reason is
r=R in a cylindrical geometry, see Fig).10ther situations that the NGP with a spatial inhomogeneity generally features
can also be explored by introducing appropriate boundaryhe presence of potential wellformed by the space-charge
conditions, e.g., when the NGP is surrounded by an anodgeld in which the majority of electrons are trappésee
(metallic surface[7], by a grid anodg¢34], or by a cathode [2,12] for detail9. In this respect, it should be noted that
surface[12,39. The kinetic and energy-balance equationscalling the NGP the “field-free” plasma is, strictly speaking,
are of primary interest here and they are written down for enot correct — there is always an electric field in the plasma,
NGP of an arbitrary geometrfformulas in a vector nota- thjs field is self-consistent and such that the bulk electrons
tion). Although temporal evolution is allowed for in these are trapped in the plasnid0].
equations, a steady-state plasma is assumed. The numerical
simulations, comparisons with the theory, and analytic esti- lIl. INHOMOGENEOUS KINETIC EQUATION
mates are presented for a one-dimensiqadl) cylindrical FOR THE SLOW ELECTRONS
geometry(see Fig. 1, but the results and conclusions can be
extended to other geometries. This geometry approximates The issues devoted to the nonlocal electron kinetics have
the NGP in the cathode region of a glow discharge withbeen studied most thoroughly by Tsendimg.,[41]). Re-
planar electrodes, in which the longitudinal dimension of thecently, these issues have attracted renewed attention, and
NGP exceeds its transverse dimension. several review papers have been presented by Tsendin
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[42,40, Kolobov and GodyaK43], and Kortshageret al. afo
[44]. Here we only briefly outline some principal results and Jea(€.1)=Vafo+Da—— )
the reader is referred to these papers for further detail.

In order to calculate the slow EDF, a kinetic equation is t0jg the electron flux in energy space due to electron-atom
be derived. The following simplifications can be made. Let(e_a) elastic collisions withV,= sv,w andD,=T,V,, v,
us suppose that the gas pressure is not too(lmilisional s the e-a collision frequency for momentum transfer, and
regime, i.e.,A<A, where\ is the electron mean free path s5_ o1y s the fraction of electron energy lost in an elastic
for momentum transfer and the characteristic plasma di- ¢_g collision. It should be mentioned that, in thiSokker-
mension(e.g., A~R/2 for a cylindrical geometry In the _Planck notation, V, (V,) and D, (D,) represent, respec-
elastic energy range, the EDF can then be treated as beéifigely the dynamic-friction and diffusion coefficients in en-
nearly isotropic due to the high rate of electron-atom coII|-ergy space due te-e (e-a) collisions. The total dynamic-
sions, which randomize quickly the directed motion of angriction and diffusion coefficients can be introduced \4s
electron. This enables the EDF to be expanded(&3,t)  —v_tv_ and D,=D.+D,, respectively. Similarly, it is
=fo(v,1,) + (V/v) T1(v.1,1), wheref, is the isotropic part  hossible to include electron-iote.g., [45]) and electron-
of the EDF,f, is its directed part|fy|<fo), andv is the  mojecule(e.g.,[25]) collisions.
electron velocity ¢=|v|). It is then highly convenient to The termQ™ in Eq. (1) represents the production of elec-
write down the kinetic equation in variablesand total en- ons py jonization due to the fast electrafisnizen. Since
ergy (kinetic energy plus potential enengg=w—e®(r),  the energy distribution of secondary electrons produced by
where &(r) is the space-chargdambipolay potential  jonization depends only slightly on the energy of the ionizing

[—ed(r)=0] andw= %mvz the kinetic energy41]. Inor-  (tasy electrons, it is possible to separate the energy and spa-
der to simplify the equation fd, and to allow for temporal  tjg| dependences in the ionization rate,

evolution of fy, one can assume théf is quasistationary

(see[44] for detail9. In what follows, however, time depen- Q' (w,rn)=Q%(rNR*(w), (6)

dence is neglected and the corresponding terms in the kinetic

and energy-balance equations are retained for the sake where Q*(r) represents the number of ionizations per unit

generality only. One can then write down the kinetic equa~volume per unit time, and where the secondary-electron en-

tion for fy(e,r) as ergy distributionR™ (w) can be represented using an analytic
approximation to the differential ionization cross section

afq 1 V. Jw 1 (9\/—(3 F1)4+0 +Qr (Green’s formula, see, e.d17]) to obtain
—=——=V-ywJ+ ——Jw ,
&t \/W r \/V—Vaf ee e 6*
() R* (W)= —=———. 7
W)= oy )
where
Here,R™" is normalized to unity in the elastic energy range:
1 < WRTdw=1
J.(e)=Svfi=—D,Vig(er 2 JoywRdw=1.. |
en) 3’1 Violer) @ The last term in Eq(1) represents the production of su-

perthermal electrons in processes involving metastables. For
is the electron flux in configuration space al@g=3\v the  the two most important of these processes, it can be written
electron diffusion coefficient; as

* 2
Jee(é,r)zvefo"‘Deo;_fEO (3) Q Banet(r)RP(W)+Bsupnme1(r)ne(r)Rsup{W)a (8)

where n. is the metastable densityBp (Rp) and

is the electron flux in energy space due to electron-electroffsup (Rsup @re the rate constant@energy spectjacorre-
(e-€) Coulomb collisionsV,=2vWA;, andDe=2v WA, spondmg, respectlvgly, to.the processes of .Pennlng ioniza-
with tion and superelastic collision®4]. As mentioned previ-

ously, the termQ* can be very important for the NGP.
w(r) However, for simplicity, in what follows this term is omitted,
J fo(w' HJw dw’, (4a) i.e., Q* =0 (see[24,12,14 for details.
0 The EDF in Eq.(1) is normalized according to

1
Ne(r)

Al:

J'W(r)fo(w’,r)w’mdw’ Ne(r)= ﬁo o )\/e+e<1>(r)f0(e,r)de. 9

_ 2
A2_3ne(r) ( 0

* This equation can also be regarded as a link between the
3/2 ’ ’
tw (r)fw(r)fo(w Ndw ) (4b) electron-density and potential profilesi(r)=nJ®(r)]
(e.g.,[41]). The electron-current density is
where fy(w,r) is expressed in terms of kinetic energy and

ve=4mnge*Ac/(m?v3) is the frequency ofe-e Coulomb j (r):efoc WD, (e,1)Vio(er)de. (10)
collisions with A being the Coulomb logarithm; ¢ —ed(r) nr ’
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The boundary conditions for a cylindrical geometsee  where the separation energy, can be estimated from the

Fig. 1) can be written in a compact form as condition thatf{™ (w,,) ~ f{’(w,,). Using analytic estimates
of the EDF obtained in Secs. Il A and 1l B below, one can
afo(e,r) _0 11 obtain the following estimate: w,,~T.In(n./ny)
Fr [ 1D [ 2ve+ Svat 7o )], Wherene=Q* 7amp: Tamp and
r=Re<—ed, T are, respectively, the times of ambipolar diffusiofy,

~A?ID gy, WhereD ., is the ambipolar diffusion coeffi-
Here, the first condition reflects the radial symmetry of theciend and of free diffusion of a superthermal electron to the
problem. The second condition in E@.1) states the absence Wall (rs~A?/D;). Under the studied discharge conditions,
of electron flux <—e®d,,) at ther=r,{€) boundary Wm~(4-7)Te.
determined byw(e,r)=0 (see Fig. 1 The third condition in The separation in Eq(14) enormously simplifies the
Eq. (11) is due to the fact that the electrons with total ener-pProblem since the shape of the bulk EDF is now knoavn
gies e< —ed)wa” are reflected by the Space-charge potentiapriori, the parameters of which, i.e., the electron density and
drop, —[®yai— PA(R)], in the boundary sheatfwhich is  temperature, can be found from the corresponding patrticle-
assumed to be infinitely thin and fully collisionless for elec-and energy-balance equations. In the situation wherano
trons. The boundary condition for the untrapped electrongPriori knowledge of the EDRor its bulk par} is available,
(e>—ed,,) has to account for the removal of electronsthere is little point in deriving an energynd particle bal-
from the loss cone in velocity space due to the presence gince and so the full kinetic equation must be solted the
the absorbing surfacavall) [46]. This results in the depar- Positive-column plasmaAs a first approximation, the super-
ture from an isotropic EDF and it can be taken into accounthermal EDF in Eq(14) (being a solution to the inhomoge-

approximately by applying the following boundary condition N€ous kinetic equation can be obtained by ignoring
(e.g.,[22)): e-e interactions between the superthermal electrons them-

selves and by considering onlg-e interactions with the
5Q Maxwellian electrons. A limitation of this approach is that
(vfo(e,r)4—) , (120 the details of the EDF in the transition regiow£w,,),
m r=R from the Maxwellian distribution to the superthermal distri-
bution, cannot be described accurately. However, since the
where Maxwellian EDF falls off rapidly with energy and the super-
thermal EDF is broad, this transition region is typically nar-
e+ed row (its width is of the order off,) and affects the solution
~wm (13 o_nly_s_,lightly. The fL_JII kinetic equa_tion can then_b_e sir_nplified
significantly by using a reducedinear) e-e collision inte-
gral, which in its turn can be obtained assuming that the bulk
EDF is Maxwellian with a given electron density and tem-
perature. The following fits to coefficientd;(w,r) and
As(w,r) in Egs.(4a and(4b) can be used with good accu-

or

=<—Dr(6,r)8—fo>

r=R

60

is the effective solid angle of the wall loss cop6]. Note

that this boundary condition, in conjunction with the bound-

ary condition(11) atr=R, ensures continuity offy/Jr at

e=—ed,, since5Q)—0 whene— —ed,, 4. )
Once the kinetic equation and its boundary conditions aréa®y [47]:

specified, a solution to this nonlinear partial-differential

equation can be found numericallsee Sec. ¥, In the NGP, _ 0.385W/Te, W/Te<2.6

owing to the relatively low mean energy of electrqos, the i 1, W/T>2.6

positive-column plasmathe rate ofe-e Coulomb collisions

(at thermal energigsmay exceed the rates of oth@slow)  The kinetic equatior(1) involving these coefficients is no
processesgparticularly, e.g., ambipolar diffusion and recom- |onger nonlinear integro-differential but linear differential

bination by many orders of magnitude. Since e colli- 54 can be solved rather easily to fif§d provided tham,
sion integral has a complicatednonlinear integro- and T, are known, i.e.,fE,s)=fés)(e,r,ne,Te). Furthermore,

differentia) form, the direct numerical solution of this . e (s) e
equation represents a difficult task. However, it is known that” order to findf” whenw/Te>1, the energy-diffusion term

when e-e Coulomb collisions dominate, the solution to the With Ddf/de can be ignoredi.e., A,=0) to within correc-
(homogeneouskinetic equation is Maxwellian. Moreover, 10NS of the order off¢/w<1 (e.g.,[18].

due to the efficient ionization by fast electrons, the EDF tail The at?ove simplifications e_nable one to take account _Of
is raised significantly by superthermal electrons with essent-)Oth Spat"?' and energy re|a>§at|on_ OT fche slow el_ectrons. Itis,
tially non-Maxwellian distribution; the superthermal part of NOWeVer, instructive to consider limiting cases in which the
the EDF occupies the major portion of the elastic energ)FDF 1S governeq .b.y either spat.lal motion or coII|§|onaI ef-
region since the condition that (4—T)/e* <1 is generally fects. In. these I|r_n|t|ng cases, S|mplt_a apalyt!c .estlmates can
well satisfied. Hence, an obvious simplification that can bé:’e obtained, V‘_’h'Ch can be usefu_l n |dent|fy|ng the most_
made is to break the EDF up into two parts, namely, thémportant physical processes and in interpreting the numeri-

Maxwellian partfgm) for w=w,, and the superthermal part cal r.esults. It fOHOWS. from t.he.k.met|c equaﬂc(p) that the
) . spatial scale, on which a significant change in electron en-
fy’ for w=w, (e.g.,[21,18), i.e.,

ergy takes place, is determined by the energy-relaxation
- - length \. [41,42. Depending on the\./A ratio, the EDF
fole,r)=Tfo (e,r)+ 1y (€,r), (14 formation regime can be eithemtnlocal’ or “ local’ (see

A2 = TeAl f (15)
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[41,42 for detaily. Since the EDF can be separated into the

Maxwellian and superthermal paitsee Eq.(14)], one can
obtain a rough estimate af, :

A W=W
\/51 m
(W)= (16)
A\ 1
—_ WRW,
VoV1+2v,18v,

Here, the difference between the values for the Maxwell-
ian (w=<w,,) and superthermaM{=w,,) electrons is due to
the fact that no energy relaxation ée collisions occurs for
the Maxwellian electronsJ¢.=0).

A. Nonlocal electron distribution function

In the limiting case whem > A, the terms involving

gradients of the EDF and potential are essential in the kineti
equation, and it is said that the EDF formation regime is
“nonlocal” This implies that the EDF in a given space re-

gion is determined not only by the plasma parameters of this
region but also by those over the entire discharge volume—p (e,r)— =
While an electron moves through the discharge volume, its

total energy igalmos}) conserved, i.e.¢=const. Under non-

local conditions, the electrons can be divided into two dis-

tinct groups, namely, thérapped (with e<—e®,,,) and
untrapped (free) (with e>—ed,,). The untrapped elec-

trons escape quickly to the wall without experiencing signifi- X
cant changes in energy. The trapped electrons with a tot&fown provided that
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e de’
M )= —
foa(e)=C, exp( fo T(e’))' (18)

where C,, is the normalization constant and (e)

=<\/WDE>/<\/WVE> is the characteristic temperature of an
electron with an energy. In the case when-ecollisions are
dominant (2> 8v,) T(€)~T,, and the bulk EDF takes the
form of the Maxwell-Boltzmann distribution in terms of total
energy:

fi"(e)= €lTy), (19

2 Ngg
\/;—Tglz exp( -
wherengg is the value of the electron density at the position
of zero reference potentigt.g.,r =0 for a cylindrical geom-
etry). Once the nonlocal EDF(¢) is found, the small per-
turbation termf{)(e,r) (which determines the electron flux
in configuration spacd,) can be obtained from the full ki-
Retic equation(1); the equation forf®)(e,r) then becomes
(see[41] for detaily

1(r d
Ffor dr [ﬁ\/VT

dtoo(e)
Jde

t
1

pe Vderfg(e)

+D(er")

+WQ+(w',r’)],

wherew’=e+e®(r’) and the right-hand side of which is
M(e) is found from Eq.(17).

energye can only move within a restricteghccessiblgvol- The untrapped electrons, being capable of escaping to the
ume in the plasma/..{e€), which is determined bye< discharge wall, cannot be treated using the spatially averaged
—ed(r) [e.g., for a cylindrical geometry, this volume is kinetic equation. Their nonlocal EDF can be obtained by

bounded by the =r.{€) surface, see Fig.]1The trapped
electrons consist of Maxwellian electrohghen 2v > 6v,,

see EQ.(19) below] and superthermal electrons with total
energiese<—ed,,,; the untrapped electrons consist of

those superthermal electrons wid» —ed,,,,. Although

the trapped electrons constitute the majority of electrons, the

ignoring the energy-relaxation terms in the kinetic equation
(2); for a cylindrical geometry it becomes

Rdr’ '
fgs)(e,r)zf _fr r'QF (w,r"ydr"+£3,, (20
rr'D,Jo

s)

current that they transport is negligible, and the main part oivheref($), is the nonlocal EDF at the discharge wall, which
the electron current is due to free diffusion of the untrapped:an be found from the boundary conditi@t?). Assuming a

electrons. In such a situation, the electron curjgrdannot
be expressed in terms of the trapped EDF characteristics
their spatial derivatives namely,n. andT,, so that the ki-
netic treatment must be employg2i42,4Q.

The trapped EDF, being approximately a function only of

the total energy, can be expanded E{,{?(e,r)=f8&(e)
+£8(e,r), where f{)<f{). Inserting this expression for
fg) into the kinetic equatioril) and performing spatial av-
eraging over the accessible volume yields

—

| (v g+ () 22

7e | F(\WwQ)=0, (17

where the spatial-diffusion term has vanished &Xd(e)
denotes averaging oK(e,r) over the accessible volume
V.c{ €). Since the source terfiwQ™) can be neglected for
the bulk, trapped electrons, the solution of ELj) (the bulk
EDF) can be written approximately as

spatially uniform ionization rateQ* (r)=Q, =const, one
can obtain

f(e,r)=Qg R" (W) 7¢(W)[1— (r/R)%+ Bre €)1,
(21)

whereB,f €)= 2(NR)(8Q/47) 1 is the effective reflection
coefficient[see Eq.(12)].

B. Local electron distribution function

In the case wheih .< A, electron energy relaxation takes
place within a short distance, and it is said that thecal”
regime is realized. The perturbation of the local EDF owing
to spatial diffusion exists only within short distandes the
order of A .<A) from the plasma boundaries and the terms
involving spatial gradients ofy(e,r) and®(r) can be ne-
glected in the kinetic equation. In the local regime, in con-
trast with the nonlocal regime, it is not possible to discrimi-
nate between trapped and untrapped electrons. Provided that
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2v> 6v, at thermal energies, the bulk EDF is close to Max-the EDF therein is close to Maxwellian. Thus the upper limit
wellian, which is now given in terms of kinetic energy as  of integratione™ can be chosen to be an energy where the
EDF starts to deviate from Maxwelliaf@.g.,[25]), i.e., €™

2 ng(r) ~em, Where e, is the total energy corresponding g, .
fom(w,r)= V7 T exp(—w/Te). (22 Note that since the trapped EDF is very close to Maxwellian
(i.e., em~—ed,,), the integration domain, notably in the
Recalling that the ambipolar potential in the plasma can b@onlocal regime, can be chosen to bee™=—ed,q.
calculated approximately as Hence, in this situation the energy balance of the Maxwellian
electrons can be identified with that of the trapped electrons,
®,(r)=—(T./e)Inng+const, (23)  and, for simplicity, one can us€™= —ed,,; (see alsd2]).

The energy-balance equation for the Maxwellian electrons
one can conclude that the Maxwellian EDFs in the nonlocabecomes
[Eqg. (19)] and local[Eq. (22)] regimes coincide. Hence, the
Maxwellian EDF is somewhat unique in these different re- d (3
gimes. Moreover, in the local regime, the Maxwellian EDF 4 Ene
can be regarded as being “nonlocal” in the sense that it
depends only on total energy and thus, as in the nonlocal +Hg)+HQ- (25
regime, the Maxwellian electrons can also be considered to
be trapped[Note that, due to the presence of superthermaHere, the electron temperature, the heat flux, and current
electrons, a realistic ambipolar-potential profile may differdensity of the Maxwellian electrons, respectively, are given
from the simplified profile of Eq(23) [39].] As far as the by
superthermalWy=w,,) electrons are concerned, their EDF in

T = VG B H - H

the local regime can be written approximately as 2(wfo) -
g pp y Te:3 AR qm=(wJ,), jM=e(J) (26)
(s) Q+(r) € o+ ’ ’ .
fo (w,r)= YW RF(w)dw’, (24 where the energy average of a quanitys
Vwv, Jw

where the difference between the total and kinetic energies is (X)(r)= fem Ve+ed(r)X(e,r)de.
neglected, as is the energy-diffusion tefsee[18,39 for —ed(n)
more details

The first term in Eq(25) (divergence of the electron heat

Itis now appropriate to mention the following. The super- flux) describes energy transfer associated with eledicha-

}ﬂigﬁgﬁﬁg)'ncéaebzogé?gjg{ae%dfggfnalari?r;mﬁe(j ?(?ncest.ic otic) motion. The second term in E(5) results from dif-
P fusion in the electric fieldE= —V®. This term involves the
equation by ignoring either the energy-relaxation terms or t density of the M I lect rg) hich ;
the spatial-diffusion term. The situation, however, is compli- current density of the Vlaxwetlian electro which mus
cated by the fact that the electron mean free patbaries not be mistaken for the total electron-current dengjtyf
(for the case of He, increasesith energy, which may result Ed- (10). The total electron-current densigy is to be equal
to the ion-current densitj; at any point in the plasma, i.e.,

in different parts of the EDF being in different regimes. In
this situation, the simplifications discussed in Secs. Il A ande=1i=€DampVNe. Typically, since the Maxwellian elec-

Il B may be invalid and the superthermal EDF can be foundOns are trapped, their currefif” is small in magnitude
using the kinetic equation with a reduceee collision inte-  (i.€., [j{™|/|je|<1) and also may have a complicated spatial
gral [Egs. (3) and (15)], and/or neglecting the energy- distribution(determined by{}). The last term in Eq(25) is
diffusion term (©.=0). The resulting (linean partial- the heating term due to secondary electrons generated with
differential equation can be solved rather easily by standard<e,,, Q(r)=(wQ*).

numerical techniques. The terms in Eq(25) due toe-acollisions are
() () = _
IV. ENERGY BALANCE OF THE MAXWELLIAN Hea (N=w¥,fo|. —(Vafo), (279
ELECTRONS
afg

Having derived the kinetic equation, one can obtain the H (N =-w®D,—
energy-balance equation by multiplying the kinetic equation
(1) by the kinetic energy(e,r) and integrating it over en-
ergy. Integration over the entire energy range yields an equaFhe first terms in Eqs(279 and (27b) determine, respec-
tion for the mean energy of all electrong,. Nonetheless, tively, the energy fluxe§in energy spageinto and out of the
there is only little sense in deriving an equation ¥¢rsince  energy intervak< e, (inward and outward fluxes, wher,
the complete EDF, unlike the Maxwellian EDF, is not known >T,) due to collisions with atoms with a nonzero tempera-
a priori. Moreover, the physical mechanisms that govern forture T, .
mation of W and T, are completely differentsee Sec. Y, The condition for energy conservation @e collisions
and the energy balance of all electrawannotgive T, (see  ((WJee)=0 whene™=€*) allows the terms due te-ecol-
Sec. IV Q. In order to derive the energy balance of the Max-lisions in Eq.(25) to be expressed as integrals over the EDF
wellian electrons, the integration domain should be such thawith energies above,,:

afo
age| *(Dayo). (@7
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o where(- - -}, denotes averaging over the Maxwellian EDF of
Hg)(f)ZW3/2\/efo|em+J’ VWVefode, (288 Eq.(22). It can be shown next that, for the studied discharge
m conditions, the ternE-j{™ is small compared with, and
that, in the limiting cases, the term involving the heat flux
can be simplifiedsee Secs. IVA and IVB
We have now obtained a simplified energy-balance equa-
tion, an analysis of which allows us to draw some important

. _ _ conclusions. Using Eqg21) and (24), we can obtain an
Here, the second term Iﬁ(es) determines the heating rate of order-of-magnitude estimate

the Maxwellian electrons ie-e Coulomb collisions with the
superthermal electrons. In such collisions an energy flux out 75
of the energy intervaé< e,, may also be induced; this may Eof™ ﬁ
result in cooling of the Maxwellian electrons, which is de- 2Vt Ovy+ T
scribed by the second term H{.). The first term in Eq.

(28b) can be attributed to the energy flux out of the energyyhere .= vy(e.), 7a=ra(es), 7<= (). It can be seen
interval e< e, due toe-einteractions between the Maxwell- from this estimate that the efficiency of energy transfer is
ian electrons within the potential well. This outward energygoverned by the frequency of Coulomb collisions, be-

flux can.also be |dent|.f|ed W'th. .dlfoSIOH cooling” of the tween the Maxwellian and superthermal electrons. In the
Maxwellian electrons ine-e collisions. In the steady-state ] . ~ ~ ~_1
f stronge-e interaction, when 2.,>(dv,,7 *), the

NGP, in the presence of an important superthermal populd3S€ © . en 2 _
tion which transports almost all the electron current, this enYalue of et is large, .~ €5 (a significant fraction of the
ergy flux is small. However, this outward energy flux can beSuPerthermal energy is transferred to the cold elecjramsi
substantial in the energy balance of the Maxwellian electron§onsequentiyTe can be high. In the case of weakeinter-
for an afterglow plasma at low pressur@sd for discharges action, when 2/e<(6va,rgl), the value ofeqs is small,
in heavy gases, such as Ar and Kr, $28] for detailg, in €< €, and T, can be close to the atom temperature, i.e.,
which the sources of superthermal electrons are weak and tHg,~T,. The situation whef.; is low can be realized in the
electron (particle flux out of the energy intervaé<e,, is  nonlocal regime. In such a regime, the hot electrons diffuse
large (approximately equal to the ion fluy) [22]. quickly to the discharge wall and do not interact efficiently
In order to findT, from the energy-balance equation in its with the cold electrons. This is a manifestation of the nonlo-
general form of Eq(25), knowledge of the complete EDF is cal effects in the mechanism controlling the electron tem-
still required. However, given thésuperthermalEDF with  perature(e.g.,[22]), and attempts to calcula®, in the local
€>¢.,, itis possible to calculate the heating term in E2p) (kinetic) approximation may fail. For example, {i36], the
and thus reduce the problem to the solving of two coupledl decay is modeled for a positive-column plasma at rather
equations, namely, a simplified energy-balance equation fdow gas pressures and, to obtain reasonable agreement with
T. and a reduced kinetic equation bef). Since the super- experiment, the energy of superthermal electronsyf) had
thermal EDF depends only weakly on the electron temperato be reduced from 11 eV to 0.5 elih Ne). This can be
ture (see Secs. Il A and Il B in practice, the equation for explained by the fact that the local model used in that work
(¥ can be solved almost independently from the equatiorsignificantly overpredicts theZ; values as compared with
for T,. Taking into account that{")/H{)~w/T,;>1 for ~ those expected at low gas pressufesnlocal regimg One
w>w,,, and that the first term itl{}) can be neglected as €an also conclude from the above examples that the electron
compared with the second terfwhen e>T,), the total emperature can depend quite critically on the plasma param-

heating rate,H..=H) —H()  can be represented in a eters (ga}s pressure, electron dgnsity, d?scharge geometry,
9 es_es es P etc), which must be allowed for in modeling the NGP.

physically transparent forrfe.g.,[21,18): It follows from the energy-balance equati2b) that, due
to thermal conduction, equalization of electron temperature
Hes(r):f \/erfg@dé:Q*(r)eeff(r), (29 occurs within distances of the order QfT~)\(Te)/\/5.
€m Hence, depending on ther/A ratio, two different regimes
of electron temperature formation can be realized as speci-

where e, characterizes the effective energy units of ey)  fied in the two following sections.
transferred to the system of Maxwellian electrons in Cou-

lomb collisions with the superthermal electrons created by A. Nonlocal energy balance
ionization at a rat&*. In Eqg. (29), account is taken of the
fact thatf(®«Q™", as can be seen from Eqg1) and (24).
(Note that an energyy; corresponding t@Q* can also be
introduced in the same fashid4,12,14.) Using similar
considerations and assuming a Maxwellian EDF for
<e,, it is also possible to derive a well-known expression
for Hea=H{) —H(D:

of
- _ / 0
Hes'(n=—w® Dee

- of
—f JWDQ&—:de. (28D

€s, (31

In the case whent>A, energy gained locally by the
trapped electrong Q" (r)eq(r)] is redistributed quickly
through the accessible volunvg,.., which results in an iso-
thermal Maxwellian electron population, i.e., a spatially uni-
form T, : T¢(r)=const. Under nonlocal conditions, the entire
plasma volume contributes to the electron temperature for-
mation. The nonlocal energy-balance equation can be ob-
tained by averaging the energy-balance equat&®) over
Hea(r) =ne(1—To/T){WSv)m, (30)  the plasma volum® ,, or directly from the nonlocal kinetic
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equation(17); owing to the absence of the particle and heatmediate regimes this term can well be neglected by com-

fluxes of trapped electrons at the plasma boundary, thiparison withH., (e.g.,[22]). The term due t@-e collisions

yields in Eqg. (25 can be calculated using the local superthermal
EDF of Eq. (24), and the following estimate can then be

J(3 T obtained(e.qg.,[18,12):
E(EneTe)=—Hea+ Hest Ho, (32) ined(e.g.,[18,12)
. . © 2y € —w
where the volume average of a quantityr) is € %f ¢ = dw (35)
of wplVet OVae* +w
— 1
=—f X(r)dr, . S .
Vo Vp from which it can be seen thaty; is typically high in the
local regime.

with V,=|V,|. The steady-state nonlocal energy-balance |t js interesting to mention some peculiarities of the elec-

equation(32) is thus an algebrai¢though nonlinearequa-  tron kinetics in a hollow-cathode dischar¢gee[39,17 for

tion which can readily be solved. detailg. An important feature of a hollow-cathode discharge
The term in Eq(32) due toe-eCoulomb collisions can be s that all electrons therein are trapped by the strong cathode-

calculated using the nonlocal superthermal EDF of @4),  fa|| fields (¢f,/dr=0 atr=R). (Note, however, that the

and its crude estimate can be obtainedsee alsq12]) superthermal electrons can diffuse out along the direction of
the external-current flow and carry the electron current to the
* 2€* anode, segl2] for details) As a result of such a reduction in
Eeff™ jemWZVeTS(E*+W)2dE' 33 the “diffusion time,” the energy-transfer ratel ., may be

large, and relatively high electron temperatures can ésest

from which it can be seen that the efficiency of energy transalso discussion in Sec.)VTypically, the nonlocal regime is
fer is now determined by the time of free diffusion to the realized in a hollow-cathode discharge, id,> A, and thus
wall 75 and, sincers is short in the nonlocal regime.; of  Spatial averaging of the kinetic equation can be performed.
Eq. (33) is typically low. The completgnot only the bulk pajitEDF can be obtained
from the nonlocal kinetic equation for the trapped electrons
[Eq. (17)]. Interestingly, the superthermal EDF in this case
will have a form of a “local” distribution[as of Eq.(24)],

In the other limiting case wheRr<A, the electron tem-  and the expression fae.; will be similar to the local one
perature is controlled by the local plasma parameters angiven in Eq.(35).

thus can be spatially nonuniform. Spatial averaging of the
energy-balance equation can no longer be performed and
simplifications have to be made to calculate the term involv-
ing the electron heat flux. A traditional approximation In the traditional fluid approach, the whole electron en-
(which is only valid in the local regimeis to represent the semble is replaced by an “average” electron, to which
heat flux in terms of the electron temperature and its gradiunique particle and energy fluxes are assigned. However,

B. Local energy balance

C. Comparison with the fluid approach

ents(heat conduction and convectiofe.g.,[45,48): such an approach can hardly be used in the situation when
5 there are two groups of electrons which exhibit distinctly
M= K VTot = (jo/€) Te, 34 different behaviors both in energy and in configuration
de"(1) eVTet el Te 34 spacegsee alsd2,40)). For example, one of the major as-

sumptions of the fluid approach is that the average lifetime

where Ko=Kg(ne, Te) is the electron thermal conductivity of an electron should match the time of ambipolar diffusion
coefficient. Tamb- HOWever, in the NGP, even this assumption is violated

It is possible to show that the term involvingd™ in Eq.  for the majority of electrons. Indeed, since only a small frac-
(25 can be ignored provided that<A (local energy bal- tion k (Wherex~ —e®,,,,/e* <1) of the ionization fluxQ™*
ancg. Hence, in the local regime, the energy-balance equaarrives within the energy interval<—e®,,, which con-
tion, again, becomes an algebrgliccal) equation. In an in- tains the majority of electrons, the average lifetime of a
termediate situation, when the term involvimém) is not trapped electron is approximateky 17, which is much
negligible in the energy-balance equati@b), the approxi- longer thanr,,,,. The trapped electrons, notably in the non-
mation(34) makes this equation a second-order ordinary dif-local regime, do not participate in transport of the electron
ferential equation. The boundary condition for this equationcurrent and practically all the electron current is due to free
can be obtained from kinetic consideratidesy.,[49]). This  diffusion of the superthermal electrons. Moreover, in the
condition establishes a link between the heat flux at thesituation when two completely differerfand almost inde-
boundary and some known plasma parameters, and it sugendent groups of electrons exist, the energy balance of the
gests that the diffusion cooling that the electrons undergo invhole electron ensemble cannot be used to predict the mean
the boundary-sheath field equals the work that the electrorgnergy of one of these groups, namély, In order to con-
do to maintain this fieldsee alsd48,32). firm this, it is instructive to compare the electron tempera-

In the local regime, the terr-j™ in Eq. (25) can be tures obtained from the kinetic consideratiorB,)( with
identified with the diffusion-cooling mechanism for the Max- those obtained in the fluid approximatio{(’). For this
wellian electrons; at elevated gas pressylesal and inter-  purpose, we write the energy-balance equation obtained from
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the kinetic equatior(1) in the form of the well-known hy- tion in a discrete form and applying a central difference op-
drodynamic energy-balance equati@ng.,[45,48,32): erator on a 2D(total-energy—radiysgrid. The numbers of
energy and radial cells were 300—800 and 50-100, respec-
tively. To avoid numerical instabilities due to the strong non-
linearity of thee-ecollision integral, the procedure proposed
by Rockwood 50] was used. The idea of this procedure is to
where ihe_ heat flux. can be found from Eq(34), HsedT)  construct the matrix corresponding to taee collision inte-
=(wQ") is the heating rate by secondary electrons with 45| in such a way as to preserve the three essential proper-
€[0,e*], andH,, is given by Eq.(30) (see alsd16]). This  ties of this integralsee als¢16,17)). Namely, when only the
equation is usually solved subject to the boundary conditiory_e collision integral is retained in the kinetic equatié),
which establishes equality of the heat flux and the therma{i) the steady-state solution must be Maxwelliéi, the den-
convection flux at the discharge watie=3T{ji', where  sity and(iii) energy of the electron gas must be conserved. It
j"=21n.y, is the thermal flux withvy, being the thermal was verified numerically that starting with an arbitrary initial
electron velocity. distribution, at every radial position, the three properties
The difference in nature between the energy-balancevere satisfied within computational error. The resulting sys-
equation for the Maxwelliantrapped electrons[see Eq. tem of nonlinear algebraic equatiofs.g.,[50,16,17) was
(25)] and the hydrodynamic energy-balance equatB8) is  then solved iteratively by adding an artificial time depen-
that the latter applies to the whole electron ensemble. As dence to it and advancing in tin{&1]. Different iterative
consequence, E@36) involves the total heat flug, and the  methods were tried and the predictor-corrector metfid
total electron-current density, (=j;) in the diffusion- was found to give good convergence when using large time
cooling termE-j.; it does not involve heating by the super- steps. Moreover, to speed up convergence, the time step was
thermal electrongthe energy of an electron ensemble is con-increased dynamically(Computationally, at every odd-
served ine-ecollisions,(wJ.¢) =0) but does involve heating numbered iteration, the time step was doubldthe preci-
by secondary electror{svhich do not yet belong to the slow sion of the finite-difference scheme was enhanced by using
electron group From the “fluid” point of view, the latter the Crank-Nicolson methofb1l]. Iterations were performed
heating mechanismH.) is very efficient since the second- until the maximum relative difference between the EDF val-
ary electrons possess the full energy available to the systemes coming from two successive iterations was less than a
of slow electrongtypically, Heee>H.J: all the slow elec- predetermined precision, which typically was less than*10
trons are Maxwellian in the fluid approach and hence alHowever, no special effort to optimize the code was made
energyHq.cgoes into heating of these Maxwellian electrons,and, in order to obtain a steady-state solution, it took about
thus raisingT{" . However, from the “kinetic’ point of ~2—10 CPU hours on a medium-performance workstation.
view, most of the energil ...is expended through diffusion Calculations were carried out for a pure He discharge in a
to the wall and collisions with atoms and only itsmal)  cylindrical tube of radiusR=1 cm by assuming a spatially
fraction (i.e., HoJ is available to the Maxwelliaritrapped  uniform ionization rate, i.eQ*(r) = Qg = const, and the gas
electrons. Furthermore, by contrast with E86), in the en-  at room temperature. The electron mean free path was ap-
ergy balance of the Maxwelliaftrapped electrons, the heat- proximated ash(w)=4.5X 10 2/p cm for w=3 eV and
ing mechanismstermH,.¢ are mostly due to the superther- \(w)=2.6x 10~2\w/p cm forw>3 eV, wherep is in units
mal electrons, and heating by secondary electrons isf Torr andw s in units of eV. Four cases are presented here
negligible,Ho<Hgs. Finally, the termE- j, can also be im-  as listed in Table 1. Approximately one order-of-magnitude
portant in the hydrodynamic energy-balance equat@®  variation in gas pressure and electron density is explored.
(the diffusion-cooling term but this term is negligible in the The electron density was varied by alteri@g . The range
energy-balance equation for the Maxwelli@rapped elec-  of p and n, is such that the nonlocal regime is realized in
trons since the current of these electrons is practically zergases N1 and N2 and the intermediate regime is realized in
(lii|<|je]). Hence, one can see that the physical mechaeases N3 and N4. As an illustration, calculations ofXpéA
nisms that govern formation &, and T{" are entirely dif- ratio from Eq.(16) are presented in Table I. One can see that
ferent. This can lead to completely different quantitative rethe A /A ratio (at r=0) is large at superthermal energies
sults. Indeed, a direct comparison presented in Sec. W= €*/2>w,,) in cases N1 and N2, and that this ratio is of
demonstrates that the electron temperatures obtained frothe order of unity in cases N3 and N4. Important for the
these energy-balance equations may differ by more than a@nergy balance, and for the Maxwellian part of the EDF
order of magnitude. Thus, the fluid approach is altogethefw=w,), is thex/A ratio, which is large ap=0.5 Torr
misleading in this situatiorte.g.,[2,42,40) and cannot be and close to unity ap=>5 Torr (see Table)l Discussion of
used to describe correctly the energy balance of the Maxthe local regime(when, e.g., recombination in the plasma

J/(3 ) ]
EE”eTe ==V -ge—E-je~Heat Hseo (36)

wellian (trapped electrons(see alsd 35]). volume may become importans beyond the present scope
(see, e.g.[18]).
V. NUMERICAL RESULTS AND COMPARISON For the purposes of the present work, knowledge of the
WITH THE THEORY exact, self-consistent potential distribution is not necessary

and a model potential was used:
In order to validate the theoretical results, the full kinetic
equation(1) was solved numerically in a 1D cylindrical ge- D(r)=D,(r)=DoIn[1—(1—x)(r/R)?], (37
ometry, subject to the boundary conditiofisl) and (12).
The numerical scheme consisted in writing the kinetic equawherer <R and x=n¢(R)/n(0), with n,(0) andng(R) be-



PRE 58

ENERGY BALANCE OF THE BULK, MAXWELLIAN . ..

6549

TABLE I. Numerical and theoretical results for four different plasma conditions for a He gas and tube
radiusR=1 cm. Herep, Qg , ®,(R), and®,, are the input parameters. The numerical values0),
je(R), Te, and of the corresponding terms in the energy-balance equ@tiqmessed in units og) are
obtained from the EDFs computed from Edfj) and their complete definitions in EqR6), (283, (28b), etc.
(see Sec. IY. The numbers in brackets following the numerical value¥ ofepresent those at the discharge
center(superscriptand at the discharge waubscript. The theoretical values df, are obtained from Eq.
(32) with the EDF being computed from the kinetic equation with a redsedollision integrallEq. (15)];
the numbers in brackets represent Thevalues obtained using the nonlocal EDF of E2fl).

N1 N2 N3 N4
p (Torr) 0.5 0.5 5 5
Qg (cm3s7Y) 3.9x10'° 1.2x 106 3.4x 10 1.7x 106
— D4 (R), — Dy (V) 0.22, 0.67 0.30, 1.0 0.22, 0.67 0.30, 1.2
No(Ee¥)IA, N/A 17,11 9.8, 11 1.9,1.1 1.7, 1.1
ne(0) (cm 3), numerical 4.5 10% 3.6x 101 3.7x 101 3.4x 101
je(R) (mA cm™2), numerical 0.30 0.92 0.022 0.99
W(0), W(R) (eV), numerical 0.092, 0.15 0.11, 0.13 0.045, 0.31 0.14, 0.15
T. (eV), numerical 0.070 Go7 0.093 (oo 0.031 o3 0.082 (67
T. (eV), theory 0.0650.065  0.099(0.1)  0.030(0.029  0.077(0.087
T (ev), fluid + Eq. (36) 2.6 14 0.18 0.40
H. (eV), numerical 2.0x 1072 1.7x10° 1 1.2x10°1 6.3x1071
Hes (€V), theory + Eq. (15) 2.0x10°2 1.3x10°! 1.1x10°! 5.6x10° !
Hes (€V), theory + Eq. (21) 2.0x102 1.7x10°* 8.6x10 2 7.2x10°1
He, (€V), numerical 2.3x10°2 1.8x10° L 1.2x10°t 6.4x10°1
He, (€V), theory + Eq. (30) 2.3x10°2 1.4x 107 1.1x10°* 5.8<10°1
E-i™ (eV), numerical 2.3x10°° 2.7x1074 5.3x1074 2.3x10°3
Hg (eV) 3.4x10°3 1.1x10 2 45x10°3 1.6x1072

ing the electron density at the discharge center@) and at  (nonlocal regimg that the EDF of the trapped electrons (
the plasma boundaryr € R), respectively. In deriving Eq. <-—ed, ) is essentially spatially independent and that the
(37), Eq.(23) is used and a parabolic electron-density profileEDF of the untrapped electrong % —ed,,,) exhibits sig-
is assumed. In each case presented, the valudpfvas nificant spatial inhomogeneity. In case INAtermediate re-
taken to be close to the value ®f expected from previous gime, see Fig. @®)], small deviations from spatial homoge-
simulations and model estimations. The value(oj/as esti- neity for Eg—ed)wa" take place. One can also see that the
mated from Bohm’s criterion by equating the ion ambipolarEDFs at thermal energies are very close to Maxwellian. It is
flux j; at the plasma-wall boundary to,(R)vg (Wherevg interesting to note that in all the cas@ven in the nonlocal
=\T./M is the Bohm velocity [45], which gives x  regime, despite the losses at the wall, no marked depletion
~N\TJ(A\T,), where); is the ion mean free path. Cal- of the EDF was observed at total energies slightly above the
culations indicate thgy=0.01-0.1 in the range of the stud- wall potential energy, i.eg>—e®d,,,;. This behavior of the
ied conditions. For simplicityy was fixed at 0.05 in all the EDF is due to the boundary conditigh2) which takes into
cases considered. The value of the wall potential energy (account that the untrapped electrons have to enter the wall
=R) was calculated a® =P ,(R)+®,, wheredy, is loss cone before they can escape to the e also Eq.
the potential drop in the boundary sheétkee Fig. 1L Since  (21)]. By imposing a zero boundary condition et R (f
we do not calculate the self-consistent potential distributionr=0 for e>—e®,,,, i.e., B=0), a well-pronounced
in the plasma and use a model profilee Eq(37)], itis not  depletion could be observed.
possible, nor necessary, to find the self-consistent values of The radial dependences of the electron density, electron
d,, when the electron-current densify(R) at the wall temperature, and mean energy are presented in Fig. 3 in
equals the ion-current densify(R). Hence, we usedby, cases N2 and N4. Some datealues of T, and W at the
only to limit j.(R). By choosing the appropriate values of discharge center and wall, etin cases N1 and N3 are pre-
®g,, we could obtain the ratig.(R)/j;(R)=<2 in the low- sented in Table |. One can see that in the nonlocal regime
pressure cases, angd(R)/j;(R)=10 in the high-pressure (cases N1 and N2the spatial profile ofT is, not surpris-
cases. Note that whe® =0, jo(R)/j;(R)~10°-~1C* was ingly, almost uniform. In the intermediate reginigases N3
observed. and N4, only small variations of; with r are observefisee
The EDFs computed in cases N2 and N4 are presented ifig. 3(b) and Table ]. By contrast, the mean energy is
Fig. 2 at different radial positions. One can see in Fig) 2 spatially nonuniform and increases towards the discharge



6550 ROBERT R. ARSLANBEKOV AND ANATOLY A. KUDRYAVTSEV PRE 58

10° E e LELEAAsM s 05— ]
@ | -0 04 [ ]
12 ' H r i L ]
10 ! P r=R2 3 o 03 H g -
S0 E I r=R 3 2 02f .
> 10° E X : T P, ] % 01F H u
(?E F X A s 00 Lo ]
A 4 1 A
R ' gOolp v 7
i; e : N E g 02[ ]
E H [N Ea . F g 4
10 F | i T 03 --"H N
Wk T TN 04 oo ]
OCF Wooon Wt e o5l 1 v
1013= LT T AL T T ™~ e
£ ! 00 02 04 06 08 10
102 ;— radius 7 (cm)
i 10" — --------- — FIG. 4. Radial dependences of the terms in the energy-balance
o 10" , , equation(25) obtained numerically in case N2. The data are nor-
§LE malized toQg . The termE-j{™ is small and not plotte¢see Table
5 10 1 3 ).
= 10°F .
DS E . .
10 i 3 and electron temperature are rather different, not only in spa-
tial behavior, but also in magnitudeee Fig. 3 and Table.l
10° £ E The terms(obtained numericallyin the energy-balance

equation(25) as functions of the radial position are presented
in Fig. 4. Data obtained for case N2 only are presented since
these terms exhibit the same spatial behavior in the other

FIG. 2. EDFs computed from the full kinetic equatith: (a) studied cases as in case Nsee Table | for their absolute
case N2(b) case N4(see Table)l The vertical lines represent the values. For clarity, in Table | and Fig. 4, the terms in the
wall potential energys=—e®d,,. The arrows indicate the origins - energy-balance equation are normalized@g and are in
of the EDF[w(e,r)=0] at different radial positions. Also shown ynits of eV: in this normalization, the values if,s and eqg
are Maxwellian EDFs at=0. coincide. One can see in Table | and Fig. 4 tHat andH,,

) ) ) are the two dominant terms and that the term due to heating

wall (see Fig. 3 and Table.I This can be explained by the by secondary electronsiq, and the temE-j(em), are small

low-energy (Maxwellian) part of the EDF being gradually in all the cases. Recall that the contribution of the term in-

removed, and the superthermal part becoming more prag-_, . (m) - : )
nounced, while approaching the discharge weadle Fig. 2 Yolwpg Ge t.o the (snp];a_'ually averaged energy-balance equa
Again, one can observe that the values of the mean enerdiPh iS z€ro, i.e.Vqe ™ =0. The results of the complete nu-

merical calculations demonstrate also that the simplifications

of the termsH. and H,, made in Sec. IM(the neglect of
H{.) by comparison withH{), etc) are well justified. In
the calculations we used,=—e®,,;, and the results

total energy € (eV)

35 F

10.13
3.0 ;

Ho12

2 0 _ showed that varyinge,, (say within the range —25%,

S 20 @ +75%]) had little effect on the values &f.g, which thus

2 15k 0117 confirms that the solution is not sensitive to the choice of
= 10f B €m-

0.10 A comparison between the values ®©f calculated nu-

0.5 merically and those obtained from the present theoretical

0.0 - 0.09 analysis is reported in Table I. In all the cases considered, the
30l E set of equations used to obtain, was the following: the
s 0.14 nonlocal energy-balance equati@®) was employed to find
o~ 237 . Te; Heswas obtained from Eq29), in which the superther-
8 20 0123 mal EDF was calculated from the reduced kinetic equation
S 15k = [Eq. (2) with linear coefficients of Eq(15)]; H., was calcu-
- Lol 010 & lated from Eq.30). In order to check the applicability of the
Tt nonlocal approach, the nonlocal superthermal EDF of Eq.
05 0.08 (21) was also used to calculaké, ¢ of Eqg. (29). One can see

0.0 L— : : - -
0.0 0.2 04 0.6 0.8 1.0
radius r (cm)

in Table | that the theoretical and numerical valuesHQf

are essentially in agreement in all the cases presented. Al-

though the validity of the nonlocal approach is questionable
FIG. 3. Radial dependences of the electron density,(elec-  in the intermediate regime, the numerical and theoretical val-

tron temperatureT,), and mean energy) obtained numerically: ues of T are also in close agreement in cases N3 and N4.

(a) case N2,b) case N4(see Table)l One can observe in Table | that the energy-transfer rate in
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the high-pressure casésases N3 and Ndis significantly — observed lower values df, in the NGP of a glow discharge
larger than that in the low-pressure cagemses N1 and N2 with planar electrodes, e.gl.~0.1 eV atp= 3.5 Torr in He,
Despite this factT, is not higher in cases N3 and Nih ~ n,~4x 10" cm 2 and 0.846 mA cm? current density. It is
case N3T.~T,), which is due to the higher rate of cooling appropriate to mention that the plasma conditions of that
throughe-a collisions. work and those in case N4ee Table)l are somewhat simi-

In order to make a direct comparison between the valuekar, and the values df, observed irf1] and those predicted
of T, obtained at the kinetic level with those predicted in thehere in case N4 are rather close. We can also note that in
fluid approximation T{?), the hydrodynamic energy- heavier gasegsuch as Ne and Ay which exhibit smalle-a
balance equatiori36) was solved numerically. The results collision frequencies and have smali&factors, the electron
showed that the electron temperature is spatially uniform duéemperature is expected to be higher than in He.
to the high thermal conductivity. The spatially averaged val-
ues ong) from Eq. (36) are presented in Table I. One can
see that the values at" are significantly overestimatetly
more than an order of magnitude in the nonlocal regjiaee In summary, a model is presented that enables the elec-
compared with those obtained from the full kinetic equationtron temperature in the negative-glow plasma to be predicted
and from the energy-balance of the Maxwellian electronsin @ simple manner. It is emphasized that knowledge of the
One of the reasons of such a large discrepancy is that, in trelectron temperature is crucial in modeling the NGP and that
fluid approximation, the full available enerdy...goes into  the dynamics of the NGP, particularly the energy balance of
heating of an “average” electron, whereas in reality only athe (cold) Maxwellian electrons, is significantly affected by
small fraction of this energy is available to the Maxwellian the presence ofhot) superthermal electrons. This fact, and
electrons(see Sec. IV ¢ Hence it should be stressed againthe fact that the superthermal electrons must be described
that the hydrodynamic energy-balance equation cannot binetically, imply that the electron temperature can be calcu-
used to predict the electron temperature. lated properly only at the kinetic level. It is shown that in the

The present model in its simplified form has been appliedsituation when the electron ensemble consists of distinct
to calculate the electron temperature in the NGP of hollow-groups (e.g., trapped, untrappgdthe use of the fluid ap-
cathode discharges of different geometries, and the resulyoximation results in a physically incorrect energy-balance
reported elsewherd 2,34,13 revealed good agreement with €quation, which produces quantitatively erroneous results.
experiment. Moreover, calculations of the superthermal EDA he results of the proposed model were validated by numeri-
from the reduced kinetic equation were found to be in closecal solution of the full kinetic equation over a wide range of
agreement with the EDFs measured by prof8%13. As  gas pressures and electron densities.
mentioned in Sec. IV B, due to the large energy-transfer rate
Hqs, the values ofT, in the NGP of hollow-cathode dis-
charges can be relatively high. For examplg=0.3 eV at
p=3 Torr in He andn,~3.5x10'*cm2 in a cylindrical The authors are indebted to Professor L. D. Tsendin for
hollow-cathode dischargd 2]. For modified hollow-cathode insightful discussions and for carefully reading and com-
discharges, even highér, (up to 0.6 eV at low gas pres- menting on the manuscript. R.R.A. is grateful to Dr. R. C.
sure$ were measured and predictd#,13. Lawleret al.[1]  Tobin for his continuous support and encouragement.

VI. SUMMARY
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