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Energy balance of the bulk, Maxwellian electrons in spatially inhomogeneous
negative-glow plasmas
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The energy balance of the Maxwellian~bulk! electrons is analyzed in spatially inhomogeneous negative-
glow plasmas~NGP!. The purpose is to give a comprehensive model which enables the electron temperature in
the NGP to be predicted. Since the bulk of the electron distribution function~EDF! in the NGP is Maxwellian,
the rates of many important plasma processes~e.g., ambipolar diffusion, recombination, stepwise processes!, as
well as the plasma potential, are controlled by the electron temperature. Knowledge of the electron temperature
is thus of particular importance for such types of plasma. In order to calculate the EDF in the elastic energy
range~slow electrons!, a spatially inhomogeneous kinetic equation is employed, in which the electron-electron
collision integral is fully incorporated. Owing to the complicated~nonlinear integro-differential! form of the
electron-electron collision integral, the direct numerical solution of the full kinetic equation represents a
difficult task. An efficient way to render the problem tractable consists in breaking the slow electrons up into
two distinct groups, namely, the Maxwellian~trapped! and superthermal~untrapped! electrons. The parameters
of the Maxwellian EDF can be found from the particle- and energy-balance equations. The superthermal EDF
can be found from a reduced kinetic equation. The separation of the electron population into two groups
allowed us to obtain an energy-balance equation for the Maxwellian~cold, trapped! electrons, which properly
accounts for the most important physical mechanisms, such as heating due to Coulomb collisions with the
superthermal~hot, untrapped! electrons. It is shown that the problem of finding the electron temperature in a
weakly collisional NGP can be described correctly only at the kinetic level. In this situation, the use of the fluid
approximation, in which the electron ensemble is treated in terms of its density and mean energy, results in a
physically incorrect energy-balance equation. Furthermore, it is demonstrated that the ‘‘nonlocal’’ effects may
be critical for the problem of finding the EDF in general, and the electron temperature in particular, so that the
‘‘local’’ ~kinetic! models may also produce erroneous results. The principal terms in the energy-balance
equation are identified, and this equation is simplified to allow a ready solution and implementation into a
plasma code. The validity of the proposed model for predicting the electron temperature was confirmed by
numerical calculations of the EDF from the full kinetic equation. The results of the paper can be applied to the
NGP generated in direct-current glow discharges with planar or hollow cathodes, as well as to negative-glow-
like plasmas, such as beam-generated and afterglow~decaying! plasmas.@S1063-651X~98!08811-4#

PACS number~s!: 52.80.2s, 52.65.2y, 52.25.Dg
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I. INTRODUCTION

The negative-glow plasma~NGP! has received consider
able attention in the past and in recent years. The NG
generated in the cathode region of glow discharges with
ther cold@1–7# or hot @8–10# planar cathodes, and with ho
low cathodes@11–15#. The most distinctive feature of th
NGP~sometimes also called thefield-freeplasma! is that it is
sustained by an ‘‘external’’ ionization source~‘‘ionizer’’ !. In
a glow discharge, this source is due to fast electrons stre
ing into the NGP from the cathode-fall region. Externa
injected beams of fast~neutral or charged! particles ~e.g.,
electrons, atoms, see@16–18#! or (g) radiation can be em
ployed as such an ‘‘ionizer.’’ The NGP generally featur
enhanced ionization and excitation as compared with, e
the positive-column plasma. This makes the NGP-based
charges a useful tool in laser@14#, lighting @8–10#, and
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surface-processing@3,7# applications.
The direct-current glow discharges with either planar

hollow cathodes are the most common examples of
charges in which the NGP is generated. Another quite
portant type of plasma, which has properties similar to th
of the NGP, is the afterglow~decaying! plasma. The pulsed
~low-pressure! plasmas have been found to be very prom
ing in plasma processing and strong efforts are now be
made to model these plasmas~e.g.,@19#!. The presence of a
superthermal electron population created in various p
cesses involving excited particles~metastables! can greatly
affect the discharge dynamics in the afterglow~see@20–25#
for details!. Also very close in nature to the NGP~and to the
afterglow plasma! is the plasma of the Faraday dark spac
which is where the fast electrons streaming from the cath
fall cannot reach, but where the electric field is weak, a
where the current is transported by superthermal electr
@2#. To some extent, a negative-glow-like plasma is gen
ated in the magnetic-multicusp discharges~e.g., @26#!. The
plasma in these devices is created by electrons emitted
6539 © 1998 The American Physical Society
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hot filament and accelerated in a narrow double layer s
rounding the filament. Finally, the magnetron discharg
~e.g.,@27#! can be considered to consist partly of a NGP.

It is clear that in every model of the cathode region, a
in every electrode-to-electrode model, one inevitably has
treat the NGP. In most of such simulation models, the e
trons are divided into thefast and slow electrons
@28,3,5,29,6,7,15#. The fast electrons, which are responsib
for excitation and ionization of gas particles, are treated
netically ~Monte Carlo methods@3,11,15#, the direct solution
of the Boltzmann equation@30#, the convective scheme
@31#, etc.!. The slow electrons, which are not capable of e
citing and ionizing, are treated using the fluid~hydrody-
namic! approach. Usually the slow electrons are describe
terms of the electron densityne and temperatureTe , assum-
ing that they have a Maxwellian distribution. Whilene is
found from the continuity equations, different approach
exist to include the electron temperature in the model. So
works employ hydrodynamic energy-balance equations
predict Te in the NGP~e.g., @32,33,3#!. However, in most
models,Te is not calculated but used as an input parame
@28,8,4,9,29,11,7,15#. The value ofTe in the NGP is typi-
cally assigned to 1 eV~hereinafter,Te is expressed in units
of eV! regardless of the plasma conditions~e.g.,
@29,11,7,15#!, or assumed to be close to the atom tempera
Ta . And yet, not only canTe be very different fromTa or 1
eV but it can also vary significantly depending on the plas
parameters, such as gas pressure, electron density, disc
geometry~e.g., @12,13,34,35#!. Another quite common ap
proach in modeling the negative-glow-like plasmas~e.g., af-
terglow, magnetic-multicusp discharges! is to use a ‘‘local’’
approximation ~e.g., @36,26#!. However, since these dis
charges typically operate at rather low gas pressures,
‘‘nonlocal’’ effects, which are discussed in the present wo
may manifest themselves most strongly, so that the ‘‘loc
models may be in error. Since the majority of electrons in
NGP have a Maxwellian distribution, knowledge of the ele
tron temperature is of primary importance. The rates of m
important plasma processes~e.g., ambipolar diffusion, re
combination, stepwise processes!, as well as the plasma po
tential, in the NGP are controlled byTe , and the use ofad
hoc values ofTe can result in erroneous predictions of th
electron density, metastable density, and so on.

The slow electrons~with kinetic energiesw<e* , where
e* is the lowest excitation threshold of gas particles! in the
NGP can be divided into two weakly interdependent grou
namely, theMaxwellian ~bulk! electrons and thesuperther-
mal electrons~referred to as ‘‘intermediate’’ electrons i
@2#!. Such a division is possible since the characteristic
ergy, density, and time scales of these electron groups d
drastically. Indeed, the Maxwellian bulk is characterized b
high number density (ne) and low mean energy (Te); by
contrast, the density of superthermal electrons,ns , is signifi-
cantly lower thanne @ns'(1024– 1022)ne#, and their mean
energy,es , is significantly higher thanTe (es'e* /2@Te).
Such differences result from the following equally importa
physical reasons: The electric field in the NGP is typica
reversed~no direct field!, or there may exist a direct field bu
its intensity is weak~e.g., @2,12#!. As such the electron dis
tribution function~EDF! exhibits relatively low mean ener
gies and electron-electron Coulomb collisions become
r-
s

d
to
-

i-

-

in

s
e

to

r

re

a
rge

he
,
’’
e
-
y

s,

-
er
a

t

-

portant, so that the bulk EDF tends to be Maxwellian with
low characteristic energy (Te,1 eV!. Nonetheless, the entir
EDF in the NGP is far from being Maxwellian. The efficien
ionization by fast electrons (w@e* ) produces secondar
electrons with energies appreciably higher than the mean
ergy of the Maxwellian bulk~cf. the positive-column plasma
where secondary electrons are produced mostly with low
ergies,w!e* ). Such energetic electrons~being ‘‘too far’’
from the Maxwellian bulk! do not have time to Maxwellize
and they form a ‘‘hot’’ tail of the EDF, which is essentiall
non-Maxwellian. The lifetime of a superthermal~untrapped!
electron is determined by the fast processes of free diffus
to the wall, and of energy relaxation through electro
electron and electron-atom collisions. On the contrary,
lifetime of a bulk ~trapped! electron is comparable to th
characteristic times of the slow processes of ambipolar
fusion and recombination.

The bulk electrons in the NGP are trapped in the se
consistent~reversed! electric fields and so give practically n
contribution to the electron current. As such, even though
superthermal~untrapped! electrons are much less numerou
they play several important roles in the discharge dynam
They carry the electron current in the plasma and thus m
be allowed for in calculations of the self-consistent elect
fields in the plasma and wall sheaths. For example, dra
changes in the wall potential drop were observed and p
dicted in @23# due to the presence of a small amount of s
perthermal electrons, and scenarios when anomalously
wall potential drops may arise were analyzed in@22#. Fur-
thermore, the superthermal electrons are essential to the
ergy balance of the bulk electrons. This is due to the abse
of a direct~current-carrying! electric field in the NGP, which
results in Coulomb collisions between the cold~bulk! and
hot ~superthermal! electrons being the primary energy ga
mechanism for the cold electrons. Therefore considera
must be given to the existence of a superthermal elec
population, which is not done in the traditional fluid a
proach. Since the superthermal electrons cannot be desc
in terms of two parameters, namely,ne and Te ~fluid ap-
proach!, they must be treatedkinetically.

Already in the early studies of electron kinetics in th
ionosphere~e.g.,@37,38#! and afterglow~e.g.,@20,21#! plas-
mas, the importance of superthermal electrons was rec
nized. More recently, the same conclusion has been dr
for plasmas produced by beams of charged particles~e.g.,
@18#! and for plasmas in hollow-cathode discharges~e.g.,
@12#!. A much more significant number of works, howeve
deals with the cathode region of a glow discharge with p
nar electrodes. Bayleet al. @33# concluded that the only en
ergy gain process for the electrons in the NGP is due to
work of electron pressure. Surendraet al. @3# allowed for
heating of slow electrons (w<e* ) by fast electrons (w
.e* ) only. Lawler et al. @1# have analyzed the power ba
ance of the negative-glow electrons. Monte Carlo simu
tions were used to calculate the distribution of the ‘‘ho
electrons in the NGP. In the Monte Carlo simulations, a u
form nonreversed electric field~1.0 V/cm and 10 V/cm! was
assumed and the ‘‘cold’’ trapped electrons were not
cluded. An estimation of the power balance for a single se
discharge parameters was presented, which is based o
results of the Monte Carlo simulations and refined expe
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ments. It has been concluded in@1# that heating due to Cou
lomb collisions with the hot electrons is the dominant ene
gain mechanism in the power balance of the cold electro
Kolobov and Tsendin@2# have presented an analytic mod
of the cathode region of a short glow discharge. Their mo
incorporates an energy-balance equation for the trapped
trons based on a kinetic equation for the slow electrons in
‘‘nonlocal’’ regime. It was pointed out in@2# that the prob-
lem of deriving the energy balance is complicated also by
fact that the value ofTe is sensitive to the shape of the ED
at total energies close to the wall potential energy.

In @12,34,13,14#, a simplified model was used to calcula
the electron temperature in the NGP of hollow-cathode d
charges. Some assumptions of that model, however,
mained to be validated by rigorous theoretical and numer
calculations. Such calculations necessitate the direct solu
of a full kinetic equation, which represents an extens
computational task. So it is highly desirable to develop
comprehensive model for predicting the electron tempera
in the NGP in a relatively simple manner, without solving
full kinetic equation. In the present paper such a mode
presented and its results are compared with complete
merical calculations. In Sec. II the physical assumptions
the model are discussed. In Sec. III a spatially inhomo
neous kinetic equation is introduced, which allows one
calculate the slow EDF including electron-electron Coulo
interactions. An energy-balance equation for the Maxwell
electrons is introduced and limiting cases corresponding
the ‘‘nonlocal’’ and ‘‘local’’ regimes are analyzed in Sec
IV. In Sec. V numerical results are presented and compa
with the theoretical predictions. Finally, Sec. VI gives t
summary.

II. PHYSICAL ASSUMPTIONS OF THE MODEL

A model plasma discharge is considered here which
proximates the NGP generated experimentally. Even tho
the results can be applied to different types of NGP, the N
created by fast electrons is implied, as occurs in dire
current glow discharges with either planar or hollow ca
odes. Such a plasma operates typically at gas pressures
100’s of mTorr to 10’s of Torr and electron densities fro
1010cm23 to 1014cm23. It is supposed that the NGP is su
rounded by a dielectric wall defined asrPSp , wherer is the
spatial coordinate andSp the plasma-boundary surface~e.g.,
r 5R in a cylindrical geometry, see Fig. 1!. Other situations
can also be explored by introducing appropriate bound
conditions, e.g., when the NGP is surrounded by an an
~metallic! surface@7#, by a grid anode@34#, or by a cathode
surface@12,39#. The kinetic and energy-balance equatio
are of primary interest here and they are written down fo
NGP of an arbitrary geometry~formulas in a vector nota
tion!. Although temporal evolution is allowed for in thes
equations, a steady-state plasma is assumed. The num
simulations, comparisons with the theory, and analytic e
mates are presented for a one-dimensional~1D! cylindrical
geometry~see Fig. 1!, but the results and conclusions can
extended to other geometries. This geometry approxim
the NGP in the cathode region of a glow discharge w
planar electrodes, in which the longitudinal dimension of
NGP exceeds its transverse dimension.
y
s.

el
ec-
e

e

-
e-
al
on
e
a
re

is
u-
f
-

o
b
n
to

d

p-
h
P
t-
-
om

ry
de

s
a

ical
i-

es

e

We limit ourselves to the case of a rare-gas discharge
consider only the slow electrons. The slow electrons inclu
all those with kinetic energiesw<e* ~the elastic energy
range!. Thus all electrons ~Maxwellian, superthermal
trapped, untrapped! considered in the paper are include
among the slow electrons. In the absorbing-wall approxim
tion n*→` ~where n* is the frequency of inelastic pro
cesses!, we let the slow EDF vanish for energiesw>e*
~e.g., @2#!; hence herew5e* is the maximum electron en
ergy (w`5e* ). Therefore we neglect inelastic processes
volving ground-state atoms, as well as those involving me
stables~see @24# for details!. It is supposed that electron
appear in the elastic energy region through the action of
external ionizer~due to fast electrons withw@e* ). The fast
electrons are not treated, and the rate of electron produc
~ionization! is assumed to be an input parameter. Also, p
cesses involving metastables are discussed, by which su
thermal electrons in the elastic energy range may appear~see
@24# for details!. Such processes can be of great importan
in the NGP~see also@10#! since the metastable density
often comparable with, or exceeds, the electron density.

Finally, only the space-charge~ambipolar! electric field is
assumed to exist in the plasma~no direct field!. The reason is
that the NGP with a spatial inhomogeneity generally featu
the presence of apotential wellformed by the space-charg
field in which the majority of electrons are trapped~see
@2,12# for details!. In this respect, it should be noted th
calling the NGP the ‘‘field-free’’ plasma is, strictly speakin
not correct — there is always an electric field in the plasm
this field is self-consistent and such that the bulk electr
are trapped in the plasma@40#.

III. INHOMOGENEOUS KINETIC EQUATION
FOR THE SLOW ELECTRONS

The issues devoted to the nonlocal electron kinetics h
been studied most thoroughly by Tsendin~e.g., @41#!. Re-
cently, these issues have attracted renewed attention,
several review papers have been presented by Tse

FIG. 1. Model discharge configuration of a cylindrical geom
etry. The EDF is shown schematically on the vertical energy a
The shaded area represents the EDF of the untrapped electror
5r acc(e) determine the turning points, between which an elect
with a total energye bounces. The thickness of the boundary she
is enlarged for clarity.
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@42,40#, Kolobov and Godyak@43#, and Kortshagenet al.
@44#. Here we only briefly outline some principal results a
the reader is referred to these papers for further detail.

In order to calculate the slow EDF, a kinetic equation is
be derived. The following simplifications can be made. L
us suppose that the gas pressure is not too low~collisional
regime!, i.e., l!L, wherel is the electron mean free pat
for momentum transfer andL the characteristic plasma d
mension~e.g., L'R/2 for a cylindrical geometry!. In the
elastic energy range, the EDF can then be treated as b
nearly isotropic due to the high rate of electron-atom co
sions, which randomize quickly the directed motion of
electron. This enables the EDF to be expanded asf (v,r ,t)
5 f 0(v,r ,t)1(v/v)•f1(v,r ,t), where f 0 is the isotropic part
of the EDF, f1 is its directed part (uf1u! f 0), and v is the
electron velocity (v5uvu). It is then highly convenient to
write down the kinetic equation in variablesr and total en-
ergy ~kinetic energy plus potential energy! e5w2eF(r ),
where F(r ) is the space-charge~ambipolar! potential
@2eF(r )>0# andw5 1

2 mv2 the kinetic energy@41#. In or-
der to simplify the equation forf1 , and to allow for temporal
evolution of f 0 , one can assume thatf1 is quasistationary
~see@44# for details!. In what follows, however, time depen
dence is neglected and the corresponding terms in the kin
and energy-balance equations are retained for the sak
generality only. One can then write down the kinetic equ
tion for f 0(e,r ) as

] f 0

]t
52

1

Aw
“•AwJr1

1

Aw

]

]e
Aw~Jee1Jea!1Q11Q* ,

~1!

where

Jr~e,r !5
1

3
vf152Dr“ f 0~e,r ! ~2!

is the electron flux in configuration space andDr5
1
3 lv the

electron diffusion coefficient;

Jee~e,r !5Vef 01De

] f 0

]e
~3!

is the electron flux in energy space due to electron-elec
(e-e) Coulomb collisions,Ve52newA1 , andDe52newA2
with

A15
1

ne~r !
E

0

w~r !

f 0~w8,r !Aw8dw8, ~4a!

A25
2

3ne~r ! S E0

w~r !

f 0~w8,r !w83/2dw8

1w3/2~r !E
w~r !

`

f 0~w8,r !dw8D , ~4b!

where f 0(w,r ) is expressed in terms of kinetic energy a
ne54pnee

4LC /(m2v3) is the frequency ofe-e Coulomb
collisions withLC being the Coulomb logarithm;
t

ing
-

tic
of
-

n

Jea~e,r !5Vaf 01Da

] f 0

]e
~5!

is the electron flux in energy space due to electron-at
(e-a) elastic collisions withVa5dnaw and Da5TaVa , na
is the e-a collision frequency for momentum transfer, an
d52m/M is the fraction of electron energy lost in an elas
e-a collision. It should be mentioned that, in this~Fokker-
Planck! notation, Ve (Va) and De (Da) represent, respec
tively, the dynamic-friction and diffusion coefficients in en
ergy space due toe-e ~e-a! collisions. The total dynamic-
friction and diffusion coefficients can be introduced asVe
5Ve1Va and De5De1Da , respectively. Similarly, it is
possible to include electron-ion~e.g., @45#! and electron-
molecule~e.g.,@25#! collisions.

The termQ1 in Eq. ~1! represents the production of ele
trons by ionization due to the fast electrons~ionizer!. Since
the energy distribution of secondary electrons produced
ionization depends only slightly on the energy of the ionizi
~fast! electrons, it is possible to separate the energy and
tial dependences in the ionization rate,

Q1~w,r !5Q1~r !R1~w!, ~6!

whereQ1(r ) represents the number of ionizations per u
volume per unit time, and where the secondary-electron
ergy distributionR1(w) can be represented using an analy
approximation to the differential ionization cross secti
~Green’s formula, see, e.g.,@17#! to obtain

R1~w!5
2e*

Aw~w1e* !2
. ~7!

Here,R1 is normalized to unity in the elastic energy rang

*0
e*AwR1dw51.

The last term in Eq.~1! represents the production of su
perthermal electrons in processes involving metastables.
the two most important of these processes, it can be wri
as

Q* 5bPnmet
2 ~r !RP~w!1bsupnmet~r !ne~r !Rsup~w!, ~8!

where nmet is the metastable density;bP (RP) and
bsup (Rsup) are the rate constants~energy spectra! corre-
sponding, respectively, to the processes of Penning ion
tion and superelastic collisions@24#. As mentioned previ-
ously, the termQ* can be very important for the NGP
However, for simplicity, in what follows this term is omitted
i.e., Q* 50 ~see@24,12,14# for details!.

The EDF in Eq.~1! is normalized according to

ne~r !5E
2eF~r !

`
Ae1eF~r ! f 0~e,r !de. ~9!

This equation can also be regarded as a link between
electron-density and potential profiles,ne(r )5ne@F(r )#
~e.g.,@41#!. The electron-current density is

je~r !5eE
2eF~r !

`
AwDr~e,r !“ f 0~e,r !de. ~10!
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The boundary conditions for a cylindrical geometry~see
Fig. 1! can be written in a compact form as

] f 0~e,r !

]r U r 50
r 5r acc~e!

r 5R,e<2eFwall

50. ~11!

Here, the first condition reflects the radial symmetry of t
problem. The second condition in Eq.~11! states the absenc
of electron flux (e,2eFwall) at the r 5r acc(e) boundary
determined byw(e,r )50 ~see Fig. 1!. The third condition in
Eq. ~11! is due to the fact that the electrons with total en
giese<2eFwall are reflected by the space-charge poten
drop, 2@Fwall2Fa(R)#, in the boundary sheath~which is
assumed to be infinitely thin and fully collisionless for ele
trons!. The boundary condition for the untrapped electro
(e.2eFwall) has to account for the removal of electro
from the loss cone in velocity space due to the presenc
the absorbing surface~wall! @46#. This results in the depar
ture from an isotropic EDF and it can be taken into acco
approximately by applying the following boundary conditio
~e.g.,@22#!:

S v f 0~e,r !
dV

4p D U
r 5R

5S 2Dr~e,r !
] f 0

]r D U
r 5R

, ~12!

where

dV'p
e1eFwall

e1eFa~R!
~13!

is the effective solid angle of the wall loss cone@46#. Note
that this boundary condition, in conjunction with the boun
ary condition~11! at r 5R, ensures continuity of] f 0 /]r at
e52eFwall sincedV→0 whene→2eFwall .

Once the kinetic equation and its boundary conditions
specified, a solution to this nonlinear partial-different
equation can be found numerically~see Sec. V!. In the NGP,
owing to the relatively low mean energy of electrons~cf., the
positive-column plasma!, the rate ofe-eCoulomb collisions
~at thermal energies! may exceed the rates of other~slow!
processes~particularly, e.g., ambipolar diffusion and recom
bination! by many orders of magnitude. Since thee-ecolli-
sion integral has a complicated~nonlinear integro-
differential! form, the direct numerical solution of thi
equation represents a difficult task. However, it is known t
when e-e Coulomb collisions dominate, the solution to th
~homogeneous! kinetic equation is Maxwellian. Moreover
due to the efficient ionization by fast electrons, the EDF
is raised significantly by superthermal electrons with ess
tially non-Maxwellian distribution; the superthermal part
the EDF occupies the major portion of the elastic ene
region since the condition that (4 – 7)Te /e* !1 is generally
well satisfied. Hence, an obvious simplification that can
made is to break the EDF up into two parts, namely,
Maxwellian part f 0

(m) for w&wm and the superthermal pa
f 0

(s) for w*wm ~e.g.,@21,18#!, i.e.,

f 0~e,r !5 f 0
~m!~e,r !1 f 0

~s!~e,r !, ~14!
e

-
l

s

of

t

-

re
l

t
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n-

y

e
e

where the separation energywm can be estimated from th
condition thatf 0

(m)(wm)' f 0
(s)(wm). Using analytic estimates

of the EDF obtained in Secs. III A and III B below, one ca
obtain the following estimate: wm'Te ln(ne/ns)
'ln@tamb(2ne1dna1ts

21)#, where ne'Q1tamb; tamb and
ts are, respectively, the times of ambipolar diffusion (tamb
'L2/Damb, whereDamb is the ambipolar diffusion coeffi-
cient! and of free diffusion of a superthermal electron to t
wall (ts'L2/Dr). Under the studied discharge condition
wm'(4 – 7)Te .

The separation in Eq.~14! enormously simplifies the
problem since the shape of the bulk EDF is now knowna
priori , the parameters of which, i.e., the electron density a
temperature, can be found from the corresponding parti
and energy-balance equations. In the situation when na
priori knowledge of the EDF~or its bulk part! is available,
there is little point in deriving an energy~and particle! bal-
ance and so the full kinetic equation must be solved~cf., the
positive-column plasma!. As a first approximation, the supe
thermal EDF in Eq.~14! ~being a solution to the inhomoge
neous kinetic equation! can be obtained by ignoring
e-e interactions between the superthermal electrons th
selves and by considering onlye-e interactions with the
Maxwellian electrons. A limitation of this approach is th
the details of the EDF in the transition region (w'wm),
from the Maxwellian distribution to the superthermal dist
bution, cannot be described accurately. However, since
Maxwellian EDF falls off rapidly with energy and the supe
thermal EDF is broad, this transition region is typically na
row ~its width is of the order ofTe) and affects the solution
only slightly. The full kinetic equation can then be simplifie
significantly by using a reduced~linear! e-e collision inte-
gral, which in its turn can be obtained assuming that the b
EDF is Maxwellian with a given electron density and tem
perature. The following fits to coefficientsA1(w,r ) and
A2(w,r ) in Eqs.~4a! and ~4b! can be used with good accu
racy @47#:

A15H 0.385w/Te , w/Te<2.6

1, w/Te.2.6
A25TeA1 . ~15!

The kinetic equation~1! involving these coefficients is no
longer nonlinear integro-differential but linear differenti
and can be solved rather easily to findf 0

(s) provided thatne

and Te are known, i.e.,f 0
(s)5 f 0

(s)(e,r ,ne ,Te). Furthermore,
in order to findf 0

(s) whenw/Te@1, the energy-diffusion term
with De] f /]e can be ignored~i.e., A250) to within correc-
tions of the order ofTe /w!1 ~e.g.,@18#!.

The above simplifications enable one to take accoun
both spatial and energy relaxation of the slow electrons. I
however, instructive to consider limiting cases in which t
EDF is governed by either spatial motion or collisional e
fects. In these limiting cases, simple analytic estimates
be obtained, which can be useful in identifying the mo
important physical processes and in interpreting the num
cal results. It follows from the kinetic equation~1! that the
spatial scale, on which a significant change in electron
ergy takes place, is determined by the energy-relaxa
length le @41,42#. Depending on thele /L ratio, the EDF
formation regime can be either ‘‘nonlocal’’ or ‘‘ local’’ ~see
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@41,42# for details!. Since the EDF can be separated into t
Maxwellian and superthermal parts@see Eq.~14!#, one can
obtain a rough estimate ofle :

le~w!55
l

Ad
, w&wm

l

Ad

1

A112ne /dna

, w*wm.

~16!

Here, the difference between thele values for the Maxwell-
ian (w&wm) and superthermal (w*wm) electrons is due to
the fact that no energy relaxation ine-ecollisions occurs for
the Maxwellian electrons (Jee50).

A. Nonlocal electron distribution function

In the limiting case whenle@L, the terms involving
gradients of the EDF and potential are essential in the kin
equation, and it is said that the EDF formation regime
‘‘ nonlocal.’’ This implies that the EDF in a given space re
gion is determined not only by the plasma parameters of
region but also by those over the entire discharge volu
While an electron moves through the discharge volume
total energy is~almost! conserved, i.e.,e5const. Under non-
local conditions, the electrons can be divided into two d
tinct groups, namely, thetrapped ~with e<2eFwall) and
untrapped ~free! ~with e.2eFwall). The untrapped elec
trons escape quickly to the wall without experiencing sign
cant changes in energy. The trapped electrons with a t
energye can only move within a restricted~accessible! vol-
ume in the plasmaVacc(e), which is determined bye<
2eF(r ) @e.g., for a cylindrical geometry, this volume
bounded by ther 5r acc(e) surface, see Fig. 1#. The trapped
electrons consist of Maxwellian electrons@when 2ne@dna ,
see Eq.~19! below# and superthermal electrons with tot
energiese<2eFwall ; the untrapped electrons consist
those superthermal electrons withe.2eFwall . Although
the trapped electrons constitute the majority of electrons,
current that they transport is negligible, and the main par
the electron current is due to free diffusion of the untrapp
electrons. In such a situation, the electron currentje cannot
be expressed in terms of the trapped EDF characteristics~and
their spatial derivatives!, namely,ne andTe , so that the ki-
netic treatment must be employed@2,42,40#.

The trapped EDF, being approximately a function only
the total energy, can be expanded asf 0

(t)(e,r )5 f 00
(t)(e)

1 f 01
(t)(e,r ), where f 01

(t)! f 00
(t) . Inserting this expression fo

f 0
(t) into the kinetic equation~1! and performing spatial av

eraging over the accessible volume yields

]

]eS ^AwVe& f 00
~ t !1^AwDe&

] f 00
~ t !

]e D 1^AwQ1&50, ~17!

where the spatial-diffusion term has vanished and^X̄&(e)
denotes averaging ofX(e,r ) over the accessible volum
Vacc(e). Since the source term̂AwQ1& can be neglected fo
the bulk, trapped electrons, the solution of Eq.~17! ~the bulk
EDF! can be written approximately as
e

ic
s

is
e.
ts

-

-
tal

e
f
d

f

f 00
~ t !~e !5Cn expS 2E

0

e de8

T~e8!
D , ~18!

where Cn is the normalization constant andT(e)

5^AwDe&/^AwVe& is the characteristic temperature of a
electron with an energye. In the case whene-ecollisions are
dominant (2ne@dna) T(e)'Te , and the bulk EDF takes the
form of the Maxwell-Boltzmann distribution in terms of tota
energy:

f 0
~m!~e !5

2

Ap

ne0

Te
3/2

exp~2e/Te!, ~19!

wherene0 is the value of the electron density at the positi
of zero reference potential~e.g.,r 50 for a cylindrical geom-
etry!. Once the nonlocal EDFf 00

(t)(e) is found, the small per-
turbation termf 01

(t)(e,r ) ~which determines the electron flu
in configuration spaceJr) can be obtained from the full ki-
netic equation~1!; the equation forf 01

(t)(e,r ) then becomes
~see@41# for details!

2Dr~e,r !
] f 01

~ t !

]r
5

1

r E0

r

r 8dr8H ]

]e
Aw8 FVe~e,r 8! f 00

~ t !~e !

1De~e,r 8!
] f 00

~ t !~e !

]e G1Aw8Q1~w8,r 8!J ,

wherew85e1eF(r 8) and the right-hand side of which i
known provided thatf 00

(t)(e) is found from Eq.~17!.
The untrapped electrons, being capable of escaping to

discharge wall, cannot be treated using the spatially avera
kinetic equation. Their nonlocal EDF can be obtained
ignoring the energy-relaxation terms in the kinetic equat
~1!; for a cylindrical geometry it becomes

f 0
~s!~e,r !5E

r

R dr8

r 8Dr
E

0

r 8
r 9Q1~w,r 9!dr91 f wall

~s! , ~20!

where f wall
(s) is the nonlocal EDF at the discharge wall, whic

can be found from the boundary condition~12!. Assuming a
spatially uniform ionization rate,Q1(r )5Q0

15const, one
can obtain

f 0
~s!~e,r !5Q0

1R1~w!ts~w!@12~r /R!21b ref~e!#,
~21!

whereb ref(e)5 2
3 (l/R)(dV/4p)21 is the effective reflection

coefficient@see Eq.~12!#.

B. Local electron distribution function

In the case whenle!L, electron energy relaxation take
place within a short distance, and it is said that the ‘‘local’’
regime is realized. The perturbation of the local EDF owi
to spatial diffusion exists only within short distances~of the
order ofle!L) from the plasma boundaries and the term
involving spatial gradients off 0(e,r ) and F(r ) can be ne-
glected in the kinetic equation. In the local regime, in co
trast with the nonlocal regime, it is not possible to discrim
nate between trapped and untrapped electrons. Provided
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2ne@dna at thermal energies, the bulk EDF is close to Ma
wellian, which is now given in terms of kinetic energy as

f 0
~m!~w,r !5

2

Ap

ne~r !

Te
3/2

exp~2w/Te!. ~22!

Recalling that the ambipolar potential in the plasma can
calculated approximately as

Fa~r !52~Te /e!ln ne1const, ~23!

one can conclude that the Maxwellian EDFs in the nonlo
@Eq. ~19!# and local@Eq. ~22!# regimes coincide. Hence, th
Maxwellian EDF is somewhat unique in these different
gimes. Moreover, in the local regime, the Maxwellian ED
can be regarded as being ‘‘nonlocal’’ in the sense tha
depends only on total energye, and thus, as in the nonloca
regime, the Maxwellian electrons can also be considere
be trapped.†Note that, due to the presence of supertherm
electrons, a realistic ambipolar-potential profile may dif
from the simplified profile of Eq.~23! @39#.‡ As far as the
superthermal (w*wm) electrons are concerned, their EDF
the local regime can be written approximately as

f 0
~s!~w,r !5

Q1~r !

AwVe
E

w

e* Aw8R1~w8!dw8, ~24!

where the difference between the total and kinetic energie
neglected, as is the energy-diffusion term~see @18,39# for
more details!.

It is now appropriate to mention the following. The supe
thermal EDF in the nonlocal and local regimes~see Secs.
III A and III B ! can be calculated from a simplified kinet
equation by ignoring either the energy-relaxation terms
the spatial-diffusion term. The situation, however, is comp
cated by the fact that the electron mean free pathl varies
~for the case of He, increases! with energy, which may resul
in different parts of the EDF being in different regimes.
this situation, the simplifications discussed in Secs. III A a
III B may be invalid and the superthermal EDF can be fou
using the kinetic equation with a reducede-ecollision inte-
gral @Eqs. ~3! and ~15!#, and/or neglecting the energy
diffusion term (De50). The resulting ~linear! partial-
differential equation can be solved rather easily by stand
numerical techniques.

IV. ENERGY BALANCE OF THE MAXWELLIAN
ELECTRONS

Having derived the kinetic equation, one can obtain
energy-balance equation by multiplying the kinetic equat
~1! by the kinetic energyw(e,r ) and integrating it over en
ergy. Integration over the entire energy range yields an eq
tion for the mean energy of all electrons,W. Nonetheless,
there is only little sense in deriving an equation forW since
the complete EDF, unlike the Maxwellian EDF, is not know
a priori. Moreover, the physical mechanisms that govern f
mation ofW and Te are completely different~see Sec. V!,
and the energy balance of all electronscannotgive Te ~see
Sec. IV C!. In order to derive the energy balance of the Ma
wellian electrons, the integration domain should be such
-

e

l

-

it

to
l

r

is

-

r
-

d
d

rd

e
n

a-

-

-
at

the EDF therein is close to Maxwellian. Thus the upper lim
of integratione int can be chosen to be an energy where
EDF starts to deviate from Maxwellian~e.g., @25#!, i.e., e int

'em , whereem is the total energy corresponding towm .
Note that since the trapped EDF is very close to Maxwell
~i.e., em'2eFwall), the integration domain, notably in th
nonlocal regime, can be chosen to bee<e int52eFwall .
Hence, in this situation the energy balance of the Maxwell
electrons can be identified with that of the trapped electro
and, for simplicity, one can usee int52eFwall ~see also@2#!.
The energy-balance equation for the Maxwellian electro
becomes

]

]t S 3

2
neTeD52“•qe

~m!2E• je
~m!2Hea

~2 !2Hes
~2 !1Hea

~1 !

1Hes
~1 !1HQ . ~25!

Here, the electron temperature, the heat flux, and cur
density of the Maxwellian electrons, respectively, are giv
by

Te5
2

3

^w f0&

^ f 0&
, qe

~m!5^wJr&, je
~m!5e^Jr&, ~26!

where the energy average of a quantityX is

^X&~r !5E
2eF~r !

em Ae1eF~r !X~e,r !de.

The first term in Eq.~25! ~divergence of the electron hea
flux! describes energy transfer associated with electron~cha-
otic! motion. The second term in Eq.~25! results from dif-
fusion in the electric fieldE52“F. This term involves the
current density of the Maxwellian electronsje

(m) , which must
not be mistaken for the total electron-current densityje of
Eq. ~10!. The total electron-current densityje is to be equal
to the ion-current densityj i at any point in the plasma, i.e
je5 j i5eDamb“ne . Typically, since the Maxwellian elec
trons are trapped, their currentje

(m) is small in magnitude
~i.e., u je

(m)u/u jeu!1) and also may have a complicated spat
distribution~determined byf 01

(t)). The last term in Eq.~25! is
the heating term due to secondary electrons generated
e<em , HQ(r )5^wQ1&.

The terms in Eq.~25! due toe-a collisions are

Hea
~1 !~r !5w3/2Vaf 0uem

2^Vaf 0&, ~27a!

Hea
~2 !~r !52w3/2Da

] f 0

]e U
em

1 K Da

] f 0

]e L . ~27b!

The first terms in Eqs.~27a! and ~27b! determine, respec
tively, the energy fluxes~in energy space! into and out of the
energy intervale<em ~inward and outward fluxes, whenTe
.Ta) due to collisions with atoms with a nonzero tempe
ture Ta .

The condition for energy conservation ine-e collisions
(^wJee&50 whene int5e* ) allows the terms due toe-ecol-
lisions in Eq.~25! to be expressed as integrals over the E
with energies aboveem :
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Hes
~1 !~r !5w3/2Vef 0uem

1E
em

`
AwVef 0de, ~28a!

Hes
~2 !~r !52w3/2De

] f 0

]e U
em

2E
em

`
AwDe

] f 0

]e
de. ~28b!

Here, the second term inHes
(1) determines the heating rate o

the Maxwellian electrons ine-eCoulomb collisions with the
superthermal electrons. In such collisions an energy flux
of the energy intervale<em may also be induced; this ma
result in cooling of the Maxwellian electrons, which is d
scribed by the second term inHes

(2) . The first term in Eq.
~28b! can be attributed to the energy flux out of the ene
interval e<em due toe-e interactions between the Maxwel
ian electrons within the potential well. This outward ener
flux can also be identified with ‘‘diffusion cooling’’ of the
Maxwellian electrons ine-e collisions. In the steady-stat
NGP, in the presence of an important superthermal pop
tion which transports almost all the electron current, this
ergy flux is small. However, this outward energy flux can
substantial in the energy balance of the Maxwellian electr
for an afterglow plasma at low pressures~and for discharges
in heavy gases, such as Ar and Kr, see@22# for details!, in
which the sources of superthermal electrons are weak and
electron~particle! flux out of the energy intervale<em is
large ~approximately equal to the ion fluxj i) @22#.

In order to findTe from the energy-balance equation in i
general form of Eq.~25!, knowledge of the complete EDF i
still required. However, given the~superthermal! EDF with
e.em , it is possible to calculate the heating term in Eq.~25!
and thus reduce the problem to the solving of two coup
equations, namely, a simplified energy-balance equation
Te and a reduced kinetic equation forf 0

(s) . Since the super-
thermal EDF depends only weakly on the electron tempe
ture ~see Secs. III A and III B!, in practice, the equation fo
f 0

(s) can be solved almost independently from the equa
for Te . Taking into account thatHes

(1)/Hes
(2)'w/Te@1 for

w.wm , and that the first term inHes
(1) can be neglected a

compared with the second term~when es@Te), the total
heating rate,Hes5Hes

(1)2Hes
(2) , can be represented in

physically transparent form~e.g.,@21,18#!:

Hes~r !5E
em

`
AwVef 0

~s!de5Q1~r !eeff~r !, ~29!

whereeeff characterizes the effective energy~in units of eV!
transferred to the system of Maxwellian electrons in Co
lomb collisions with the superthermal electrons created
ionization at a rateQ1. In Eq. ~29!, account is taken of the
fact that f 0

(s)}Q1, as can be seen from Eqs.~21! and ~24!.
~Note that an energyeeff* corresponding toQ* can also be
introduced in the same fashion@24,12,14#.! Using similar
considerations and assuming a Maxwellian EDF fore
<em , it is also possible to derive a well-known expressi
for Hea5Hea

(2)2Hea
(1) :

Hea~r !5ne~12Ta /Te!^wdna&m , ~30!
ut

y
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where^¯&m denotes averaging over the Maxwellian EDF
Eq. ~22!. It can be shown next that, for the studied discha
conditions, the termE• je

(m) is small compared withHea and
that, in the limiting cases, the term involving the heat fl
can be simplified~see Secs. IV A and IV B!.

We have now obtained a simplified energy-balance eq
tion, an analysis of which allows us to draw some importa
conclusions. Using Eqs.~21! and ~24!, we can obtain an
order-of-magnitude estimate

eeff'
2ñe

2ñe1dña1 t̃s
21

es , ~31!

where ñe5ne(es), ña5na(es), t̃s5ts(es). It can be seen
from this estimate that the efficiency of energy transfer
governed by the frequency of Coulomb collisions,ñe , be-
tween the Maxwellian and superthermal electrons. In
case of stronge-e interaction, when 2ñe@(dña ,t̃s

21), the
value of eeff is large,eeff'es ~a significant fraction of the
superthermal energy is transferred to the cold electrons!, and
consequentlyTe can be high. In the case of weake-e inter-
action, when 2ñe!(dña ,t̃s

21), the value ofeeff is small,
eeff!es , andTe can be close to the atom temperature, i.
Te'Ta . The situation wheneeff is low can be realized in the
nonlocal regime. In such a regime, the hot electrons diff
quickly to the discharge wall and do not interact efficien
with the cold electrons. This is a manifestation of the non
cal effects in the mechanism controlling the electron te
perature~e.g.,@22#!, and attempts to calculateTe in the local
~kinetic! approximation may fail. For example, in@36#, the
Te decay is modeled for a positive-column plasma at rat
low gas pressures and, to obtain reasonable agreement
experiment, the energy of superthermal electrons (}eeff* ) had
to be reduced from 11 eV to 0.5 eV~in Ne!. This can be
explained by the fact that the local model used in that w
significantly overpredicts theeeff* values as compared with
those expected at low gas pressures~nonlocal regime!. One
can also conclude from the above examples that the elec
temperature can depend quite critically on the plasma par
eters ~gas pressure, electron density, discharge geome
etc.!, which must be allowed for in modeling the NGP.

It follows from the energy-balance equation~25! that, due
to thermal conduction, equalization of electron temperat
occurs within distances of the order oflT'l(Te)/Ad.
Hence, depending on thelT /L ratio, two different regimes
of electron temperature formation can be realized as sp
fied in the two following sections.

A. Nonlocal energy balance

In the case whenlT@L, energy gained locally by the
trapped electrons@Q1(r )eeff(r )# is redistributed quickly
through the accessible volumeVacc, which results in an iso-
thermal Maxwellian electron population, i.e., a spatially u
form Te : Te(r )5const. Under nonlocal conditions, the enti
plasma volume contributes to the electron temperature
mation. The nonlocal energy-balance equation can be
tained by averaging the energy-balance equation~25! over
the plasma volumeVp , or directly from the nonlocal kinetic
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equation~17!; owing to the absence of the particle and he
fluxes of trapped electrons at the plasma boundary,
yields

]

]tS 3

2
ne TeD52Hea1Hes1HQ, ~32!

where the volume average of a quantityX(r ) is

X̄5
1

Vp
E

Vp

X~r !d3r ,

with Vp5uVpu. The steady-state nonlocal energy-balan
equation~32! is thus an algebraic~though nonlinear! equa-
tion which can readily be solved.

The term in Eq.~32! due toe-eCoulomb collisions can be
calculated using the nonlocal superthermal EDF of Eq.~21!,
and its crude estimate can be obtained as~see also@12#!

eeff'E
em

`

w2nets

2e*

~e* 1w!2
de, ~33!

from which it can be seen that the efficiency of energy tra
fer is now determined by the time of free diffusion to th
wall ts and, sincets is short in the nonlocal regime,eeff of
Eq. ~33! is typically low.

B. Local energy balance

In the other limiting case whenlT!L, the electron tem-
perature is controlled by the local plasma parameters
thus can be spatially nonuniform. Spatial averaging of
energy-balance equation can no longer be performed
simplifications have to be made to calculate the term invo
ing the electron heat flux. A traditional approximatio
~which is only valid in the local regime! is to represent the
heat flux in terms of the electron temperature and its gra
ents~heat conduction and convection! ~e.g.,@45,48#!:

qe
~m!~r !52Ke“Te1

5

2
~ je /e! Te , ~34!

where Ke5Ke(ne ,Te) is the electron thermal conductivit
coefficient.

It is possible to show that the term involvingqe
(m) in Eq.

~25! can be ignored provided thatlT!L ~local energy bal-
ance!. Hence, in the local regime, the energy-balance eq
tion, again, becomes an algebraic~local! equation. In an in-
termediate situation, when the term involvingqe

(m) is not
negligible in the energy-balance equation~25!, the approxi-
mation~34! makes this equation a second-order ordinary d
ferential equation. The boundary condition for this equat
can be obtained from kinetic considerations~e.g.,@49#!. This
condition establishes a link between the heat flux at
boundary and some known plasma parameters, and it
gests that the diffusion cooling that the electrons underg
the boundary-sheath field equals the work that the elect
do to maintain this field~see also@48,32#!.

In the local regime, the termE• je
(m) in Eq. ~25! can be

identified with the diffusion-cooling mechanism for the Ma
wellian electrons; at elevated gas pressures~local and inter-
t
is
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e
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mediate regimes!, this term can well be neglected by com
parison withHea ~e.g.,@22#!. The term due toe-e collisions
in Eq. ~25! can be calculated using the local supertherm
EDF of Eq. ~24!, and the following estimate can then b
obtained~e.g.,@18,12#!:

eeff'E
wm

` 2ne

2ne1dna

e* 2w

e* 1w
dw, ~35!

from which it can be seen thateeff is typically high in the
local regime.

It is interesting to mention some peculiarities of the ele
tron kinetics in a hollow-cathode discharge~see@39,12# for
details!. An important feature of a hollow-cathode dischar
is that all electrons therein are trapped by the strong catho
fall fields (] f 0 /]r 50 at r 5R). ~Note, however, that the
superthermal electrons can diffuse out along the direction
the external-current flow and carry the electron current to
anode, see@12# for details.! As a result of such a reduction i
the ‘‘diffusion time,’’ the energy-transfer rateHes may be
large, and relatively high electron temperatures can exist~see
also discussion in Sec. V!. Typically, the nonlocal regime is
realized in a hollow-cathode discharge, i.e.,le.L, and thus
spatial averaging of the kinetic equation can be perform
The complete~not only the bulk part! EDF can be obtained
from the nonlocal kinetic equation for the trapped electro
@Eq. ~17!#. Interestingly, the superthermal EDF in this ca
will have a form of a ‘‘local’’ distribution@as of Eq.~24!#,
and the expression foreeff will be similar to the local one
given in Eq.~35!.

C. Comparison with the fluid approach

In the traditional fluid approach, the whole electron e
semble is replaced by an ‘‘average’’ electron, to whi
unique particle and energy fluxes are assigned. Howe
such an approach can hardly be used in the situation w
there are two groups of electrons which exhibit distinc
different behaviors both in energy and in configurati
spaces~see also@2,40#!. For example, one of the major as
sumptions of the fluid approach is that the average lifeti
of an electron should match the time of ambipolar diffusi
tamb. However, in the NGP, even this assumption is violat
for the majority of electrons. Indeed, since only a small fra
tion k ~wherek'2eFwall /e* !1) of the ionization fluxQ1

arrives within the energy intervale<2eFwall , which con-
tains the majority of electrons, the average lifetime of
trapped electron is approximatelyk21tamb, which is much
longer thantamb. The trapped electrons, notably in the no
local regime, do not participate in transport of the electr
current and practically all the electron current is due to f
diffusion of the superthermal electrons. Moreover, in t
situation when two completely different~and almost inde-
pendent! groups of electrons exist, the energy balance of
whole electron ensemble cannot be used to predict the m
energy of one of these groups, namely,Te . In order to con-
firm this, it is instructive to compare the electron tempe
tures obtained from the kinetic considerations (Te) with
those obtained in the fluid approximation (Te

( f )). For this
purpose, we write the energy-balance equation obtained f
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the kinetic equation~1! in the form of the well-known hy-
drodynamic energy-balance equation~e.g.,@45,48,32#!:

]

]tS 3

2
neTe

~ f !D52“•qe2E• je2Hea1Hsec, ~36!

where the heat fluxqe can be found from Eq.~34!, Hsec(r )
5^wQ1& is the heating rate by secondary electrons withw
P@0,e* #, andHea is given by Eq.~30! ~see also@16#!. This
equation is usually solved subject to the boundary condi
which establishes equality of the heat flux and the ther
convection flux at the discharge wall:qe5 5

2 Te
( f ) j e

th , where
j e
th5 1

4 nev th is the thermal flux withv th being the thermal
electron velocity.

The difference in nature between the energy-bala
equation for the Maxwellian~trapped! electrons@see Eq.
~25!# and the hydrodynamic energy-balance equation~36! is
that the latter applies to the whole electron ensemble. A
consequence, Eq.~36! involves the total heat fluxqe and the
total electron-current densityje ([ j i) in the diffusion-
cooling termE• je ; it does not involve heating by the supe
thermal electrons~the energy of an electron ensemble is co
served ine-ecollisions,^wJee&50) but does involve heating
by secondary electrons~which do not yet belong to the slow
electron group!. From the ‘‘fluid’’ point of view, the latter
heating mechanism (Hsec) is very efficient since the second
ary electrons possess the full energy available to the sys
of slow electrons~typically, Hsec@Hes); all the slow elec-
trons are Maxwellian in the fluid approach and hence
energyHsecgoes into heating of these Maxwellian electron
thus raisingTe

( f ) . However, from the ‘‘kinetic’’ point of
view, most of the energyHsec is expended through diffusion
to the wall and collisions with atoms and only its~small!
fraction ~i.e., Hes) is available to the Maxwellian~trapped!
electrons. Furthermore, by contrast with Eq.~36!, in the en-
ergy balance of the Maxwellian~trapped! electrons, the heat
ing mechanisms~term Hes) are mostly due to the superthe
mal electrons, and heating by secondary electrons
negligible,HQ!Hes. Finally, the termE• je can also be im-
portant in the hydrodynamic energy-balance equation~36!
~the diffusion-cooling term!, but this term is negligible in the
energy-balance equation for the Maxwellian~trapped! elec-
trons since the current of these electrons is practically z
(u je

(m)u!u jeu). Hence, one can see that the physical mec
nisms that govern formation ofTe andTe

( f ) are entirely dif-
ferent. This can lead to completely different quantitative
sults. Indeed, a direct comparison presented in Sec
demonstrates that the electron temperatures obtained
these energy-balance equations may differ by more than
order of magnitude. Thus, the fluid approach is altoget
misleading in this situation~e.g., @2,42,40#! and cannot be
used to describe correctly the energy balance of the M
wellian ~trapped! electrons~see also@35#!.

V. NUMERICAL RESULTS AND COMPARISON
WITH THE THEORY

In order to validate the theoretical results, the full kine
equation~1! was solved numerically in a 1D cylindrical ge
ometry, subject to the boundary conditions~11! and ~12!.
The numerical scheme consisted in writing the kinetic eq
n
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tion in a discrete form and applying a central difference o
erator on a 2D~total-energy–radius! grid. The numbers of
energy and radial cells were 300–800 and 50–100, res
tively. To avoid numerical instabilities due to the strong no
linearity of thee-ecollision integral, the procedure propose
by Rockwood@50# was used. The idea of this procedure is
construct the matrix corresponding to thee-ecollision inte-
gral in such a way as to preserve the three essential pro
ties of this integral~see also@16,17#!. Namely, when only the
e-e collision integral is retained in the kinetic equation~1!,
~i! the steady-state solution must be Maxwellian,~ii ! the den-
sity and~iii ! energy of the electron gas must be conserved
was verified numerically that starting with an arbitrary initi
distribution, at every radial position, the three propert
were satisfied within computational error. The resulting s
tem of nonlinear algebraic equations~e.g., @50,16,17#! was
then solved iteratively by adding an artificial time depe
dence to it and advancing in time@51#. Different iterative
methods were tried and the predictor-corrector method@51#
was found to give good convergence when using large t
steps. Moreover, to speed up convergence, the time step
increased dynamically.~Computationally, at every odd
numbered iteration, the time step was doubled.! The preci-
sion of the finite-difference scheme was enhanced by us
the Crank-Nicolson method@51#. Iterations were performed
until the maximum relative difference between the EDF v
ues coming from two successive iterations was less tha
predetermined precision, which typically was less than 1024.
However, no special effort to optimize the code was ma
and, in order to obtain a steady-state solution, it took ab
2–10 CPU hours on a medium-performance workstation

Calculations were carried out for a pure He discharge i
cylindrical tube of radiusR51 cm by assuming a spatiall
uniform ionization rate, i.e.,Q1(r )5Q0

15const, and the gas
at room temperature. The electron mean free path was
proximated asl(w)54.531022/p cm for w<3 eV and
l(w)52.631022Aw/p cm for w.3 eV, wherep is in units
of Torr andw is in units of eV. Four cases are presented h
as listed in Table I. Approximately one order-of-magnitu
variation in gas pressure and electron density is explo
The electron density was varied by alteringQ0

1 . The range
of p and ne is such that the nonlocal regime is realized
cases N1 and N2 and the intermediate regime is realize
cases N3 and N4. As an illustration, calculations of thele /L
ratio from Eq.~16! are presented in Table I. One can see t
the le /L ratio ~at r 50) is large at superthermal energie
(w5e* /2@wm) in cases N1 and N2, and that this ratio is
the order of unity in cases N3 and N4. Important for t
energy balance, and for the Maxwellian part of the ED
(w&wm), is thelT /L ratio, which is large atp50.5 Torr
and close to unity atp55 Torr ~see Table I!. Discussion of
the local regime~when, e.g., recombination in the plasm
volume may become important! is beyond the present scop
~see, e.g.,@18#!.

For the purposes of the present work, knowledge of
exact, self-consistent potential distribution is not necess
and a model potential was used:

F~r !5Fa~r !5F0 ln@12~12x!~r /R!2#, ~37!

wherer ,R andx5ne(R)/ne(0), with ne(0) andne(R) be-
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TABLE I. Numerical and theoretical results for four different plasma conditions for a He gas and
radiusR51 cm. Here,p, Q0

1 , Fa(R), andFwall are the input parameters. The numerical values ofne(0),
j e(R), Te , and of the corresponding terms in the energy-balance equation~expressed in units ofQ0

1) are
obtained from the EDFs computed from Eq.~1! and their complete definitions in Eqs.~26!, ~28a!, ~28b!, etc.
~see Sec. IV!. The numbers in brackets following the numerical values ofTe represent those at the discharg
center~superscript! and at the discharge wall~subscript!. The theoretical values ofTe are obtained from Eq.
~32! with the EDF being computed from the kinetic equation with a reducede-ecollision integral@Eq. ~15!#;
the numbers in brackets represent theTe values obtained using the nonlocal EDF of Eq.~21!.

N1 N2 N3 N4

p ~Torr! 0.5 0.5 5 5
Q0

1 (cm23 s21) 3.931015 1.231016 3.431014 1.731016

2Fa(R),2Fwall ~V! 0.22, 0.67 0.30, 1.0 0.22, 0.67 0.30, 1.2

le(
1
2 e* )/L, lT /L 17, 11 9.8, 11 1.9, 1.1 1.7, 1.1

ne(0) (cm23), numerical 4.531010 3.631011 3.731010 3.431011

j e(R) (mA cm22), numerical 0.30 0.92 0.022 0.99
W(0), W(R) ~eV!, numerical 0.092, 0.15 0.11, 0.13 0.045, 0.31 0.14, 0.15

Tē ~eV!, numerical 0.070 (0.070
0.070) 0.093 (0.093

0.093) 0.031 (0.036
0.032) 0.082 (0.079

0.087)

Te ~eV!, theory 0.065~0.065! 0.099~0.11! 0.030~0.029! 0.077~0.087!

Te
( f ) ~eV!, fluid 1 Eq. ~36! 2.6 1.4 0.18 0.40

Hes ~eV!, numerical 2.031022 1.731021 1.231021 6.331021

Hes ~eV!, theory1 Eq. ~15! 2.031022 1.331021 1.131021 5.631021

Hes ~eV!, theory1 Eq. ~21! 2.031022 1.731021 8.631022 7.231021

Hea ~eV!, numerical 2.331022 1.831021 1.231021 6.431021

Hea ~eV!, theory1 Eq. ~30! 2.331022 1.431021 1.131021 5.831021

E• je
(m) ~eV!, numerical 2.331025 2.731024 5.331024 2.331023

HQ ~eV! 3.431023 1.131022 4.531023 1.631022
.
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ing the electron density at the discharge center (r 50) and at
the plasma boundary (r 5R), respectively. In deriving Eq
~37!, Eq. ~23! is used and a parabolic electron-density pro
is assumed. In each case presented, the value ofF0 was
taken to be close to the value ofTe expected from previous
simulations and model estimations. The value ofx was esti-
mated from Bohm’s criterion by equating the ion ambipo
flux j i at the plasma-wall boundary tone(R)vB ~wherevB

5ATe /M is the Bohm velocity! @45#, which gives x
'l iATe/(LATa), wherel i is the ion mean free path. Ca
culations indicate thatx50.01– 0.1 in the range of the stud
ied conditions. For simplicity,x was fixed at 0.05 in all the
cases considered. The value of the wall potential energr
5R) was calculated asFwall5Fa(R)1Fsh, whereFsh is
the potential drop in the boundary sheath~see Fig. 1!. Since
we do not calculate the self-consistent potential distribut
in the plasma and use a model profile@see Eq.~37!#, it is not
possible, nor necessary, to find the self-consistent value
Fsh, when the electron-current densityj e(R) at the wall
equals the ion-current densityj i(R). Hence, we usedFsh
only to limit j e(R). By choosing the appropriate values
Fsh, we could obtain the ratioj e(R)/ j i(R)&2 in the low-
pressure cases, andj e(R)/ j i(R)&10 in the high-pressure
cases. Note that whenFsh50, j e(R)/ j i(R);102– 103 was
observed.

The EDFs computed in cases N2 and N4 are presente
Fig. 2 at different radial positions. One can see in Fig. 2~a!
r

(

n

of

in

~nonlocal regime! that the EDF of the trapped electrons (e
<2eFwall) is essentially spatially independent and that t
EDF of the untrapped electrons (e.2eFwall) exhibits sig-
nificant spatial inhomogeneity. In case N4@intermediate re-
gime, see Fig. 2~b!#, small deviations from spatial homoge
neity for e<2eFwall take place. One can also see that t
EDFs at thermal energies are very close to Maxwellian. I
interesting to note that in all the cases~even in the nonlocal
regime!, despite the losses at the wall, no marked deplet
of the EDF was observed at total energies slightly above
wall potential energy, i.e.,e.2eFwall . This behavior of the
EDF is due to the boundary condition~12! which takes into
account that the untrapped electrons have to enter the
loss cone before they can escape to the wall@see also Eq.
~21!#. By imposing a zero boundary condition atr 5R ( f 0
50 for e.2eFwall , i.e., b ref50), a well-pronounced
depletion could be observed.

The radial dependences of the electron density, elec
temperature, and mean energy are presented in Fig.
cases N2 and N4. Some data~values ofTe andW at the
discharge center and wall, etc.! in cases N1 and N3 are pre
sented in Table I. One can see that in the nonlocal reg
~cases N1 and N2! the spatial profile ofTe is, not surpris-
ingly, almost uniform. In the intermediate regime~cases N3
and N4!, only small variations ofTe with r are observed@see
Fig. 3~b! and Table I#. By contrast, the mean energyW is
spatially nonuniform and increases towards the discha
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wall ~see Fig. 3 and Table I!. This can be explained by th
low-energy ~Maxwellian! part of the EDF being gradually
removed, and the superthermal part becoming more
nounced, while approaching the discharge wall~see Fig. 2!.
Again, one can observe that the values of the mean en

FIG. 2. EDFs computed from the full kinetic equation~1!: ~a!
case N2,~b! case N4~see Table I!. The vertical lines represent th
wall potential energy,e52eFwall . The arrows indicate the origin
of the EDF@w(e,r )50# at different radial positions. Also show
are Maxwellian EDFs atr 50.

FIG. 3. Radial dependences of the electron density (ne), elec-
tron temperature (Te), and mean energy (W) obtained numerically:
~a! case N2,~b! case N4~see Table I!.
o-

gy

and electron temperature are rather different, not only in s
tial behavior, but also in magnitude~see Fig. 3 and Table I!.

The terms~obtained numerically! in the energy-balance
equation~25! as functions of the radial position are present
in Fig. 4. Data obtained for case N2 only are presented s
these terms exhibit the same spatial behavior in the o
studied cases as in case N2~see Table I for their absolute
values!. For clarity, in Table I and Fig. 4, the terms in th
energy-balance equation are normalized toQ0

1 and are in
units of eV; in this normalization, the values ofHes andeeff
coincide. One can see in Table I and Fig. 4 thatHes andHea
are the two dominant terms and that the term due to hea
by secondary electrons,HQ , and the termE• je

(m) , are small
in all the cases. Recall that the contribution of the term
volving qe

(m) to the spatially averaged energy-balance eq
tion is zero, i.e.,¹qe

(m)50. The results of the complete nu
merical calculations demonstrate also that the simplificati
of the termsHes and Hea made in Sec. IV~the neglect of
Hes

(2) by comparison withHes
(1) , etc.! are well justified. In

the calculations we usedem52eFwall , and the results
showed that varyingem ~say within the range@225%,
175%]) had little effect on the values ofHes, which thus
confirms that the solution is not sensitive to the choice
em .

A comparison between the values ofTe calculated nu-
merically and those obtained from the present theoret
analysis is reported in Table I. In all the cases considered,
set of equations used to obtainTe was the following: the
nonlocal energy-balance equation~32! was employed to find
Te ; Hes was obtained from Eq.~29!, in which the superther-
mal EDF was calculated from the reduced kinetic equat
@Eq. ~1! with linear coefficients of Eq.~15!#; Hea was calcu-
lated from Eq.~30!. In order to check the applicability of the
nonlocal approach, the nonlocal superthermal EDF of
~21! was also used to calculateHes of Eq. ~29!. One can see
in Table I that the theoretical and numerical values ofHes
are essentially in agreement in all the cases presented
though the validity of the nonlocal approach is questiona
in the intermediate regime, the numerical and theoretical v
ues ofTe are also in close agreement in cases N3 and
One can observe in Table I that the energy-transfer rat

FIG. 4. Radial dependences of the terms in the energy-bala
equation~25! obtained numerically in case N2. The data are n
malized toQ0

1 . The termE• je
(m) is small and not plotted~see Table

I!.
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the high-pressure cases~cases N3 and N4! is significantly
larger than that in the low-pressure cases~cases N1 and N2!.
Despite this fact,Te is not higher in cases N3 and N4~in
case N3,Te'Ta), which is due to the higher rate of coolin
throughe-a collisions.

In order to make a direct comparison between the val
of Te obtained at the kinetic level with those predicted in t
fluid approximation (Te

( f )), the hydrodynamic energy
balance equation~36! was solved numerically. The resul
showed that the electron temperature is spatially uniform
to the high thermal conductivity. The spatially averaged v
ues ofTe

( f ) from Eq. ~36! are presented in Table I. One ca
see that the values ofTe

( f ) are significantly overestimated~by
more than an order of magnitude in the nonlocal regime! as
compared with those obtained from the full kinetic equat
and from the energy-balance of the Maxwellian electro
One of the reasons of such a large discrepancy is that, in
fluid approximation, the full available energyHsec goes into
heating of an ‘‘average’’ electron, whereas in reality only
small fraction of this energy is available to the Maxwellia
electrons~see Sec. IV C!. Hence it should be stressed aga
that the hydrodynamic energy-balance equation canno
used to predict the electron temperature.

The present model in its simplified form has been appl
to calculate the electron temperature in the NGP of hollo
cathode discharges of different geometries, and the res
reported elsewhere@12,34,13# revealed good agreement wit
experiment. Moreover, calculations of the superthermal E
from the reduced kinetic equation were found to be in clo
agreement with the EDFs measured by probes@39,13#. As
mentioned in Sec. IV B, due to the large energy-transfer
Hes, the values ofTe in the NGP of hollow-cathode dis
charges can be relatively high. For example,Te'0.3 eV at
p53 Torr in He andne'3.531011cm23 in a cylindrical
hollow-cathode discharge@12#. For modified hollow-cathode
discharges, even higherTe ~up to 0.6 eV at low gas pres
sures! were measured and predicted@34,13#. Lawleret al. @1#
s.

ys
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s
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te

observed lower values ofTe in the NGP of a glow discharge
with planar electrodes, e.g.,Te'0.1 eV atp53.5 Torr in He,
ne'431011cm23 and 0.846 mA cm22 current density. It is
appropriate to mention that the plasma conditions of t
work and those in case N4~see Table I! are somewhat simi-
lar, and the values ofTe observed in@1# and those predicted
here in case N4 are rather close. We can also note tha
heavier gases~such as Ne and Ar!, which exhibit smalle-a
collision frequencies and have smallerd factors, the electron
temperature is expected to be higher than in He.

VI. SUMMARY

In summary, a model is presented that enables the e
tron temperature in the negative-glow plasma to be predic
in a simple manner. It is emphasized that knowledge of
electron temperature is crucial in modeling the NGP and t
the dynamics of the NGP, particularly the energy balance
the ~cold! Maxwellian electrons, is significantly affected b
the presence of~hot! superthermal electrons. This fact, an
the fact that the superthermal electrons must be descr
kinetically, imply that the electron temperature can be cal
lated properly only at the kinetic level. It is shown that in th
situation when the electron ensemble consists of dist
groups ~e.g., trapped, untrapped!, the use of the fluid ap-
proximation results in a physically incorrect energy-balan
equation, which produces quantitatively erroneous resu
The results of the proposed model were validated by num
cal solution of the full kinetic equation over a wide range
gas pressures and electron densities.
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